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Abstract—Synthetic aperture sonar (SAS) provides high-
resolution underwater imaging but can suffer from artifacts due
to environment or navigation errors. This work explores Bayesian
deep learning for classifying common imaging artifacts while
quantifying model reliability. We introduce a novel labeled data
set with simulated imaging errors through controlled beamform-
ing perturbations. Two Bayesian neural network variants, Monte
Carlo dropout and flipout, were trained on this data to detect
three artifacts induced by: sound speed errors, yaw attitude error,
and additive noise. Results demonstrate these methods accurately
classify artifacts in SAS imagery while producing well-calibrated
uncertainty estimates. Uncertainty tends to be higher for uniform
seafloor textures where artifacts are harder to perceive, and lower
for richly textured environments. Analyzing uncertainty reveals
regions likely to be misclassified. By discarding 20% of the most
uncertain predictions, classification improves from 0.92 F1-score to
0.98 F1-score. Overall, the Bayesian approach enables uncertainty-
aware perception, boosting model reliability—an essential capa-
bility for real-world autonomous underwater systems. This work
establishes Bayesian deep learning as a robust technique for uncer-
tainty quantification and artifact detection in SAS.

Index Terms—Active sonar, Bayesian deep learning (BDL),
imaging artifacts, machine learning, synthetic aperture sonar
(SAS).

I. INTRODUCTION

H IGH resolution sonar systems are a common tool for
seabed remote sensing, including seabed fauna den-

sity [1], marine archaeology [2], and automatic target detection
(ATR) [3], [4]. Synthetic aperture sonar (SAS) systems collect
scattering data on the seafloor over a variety of spatial locations,
and are coherently combined [5], [6] to form an image with
higher resolution in the along-track direction than is possible
using the physical aperture (if frequency and bandwidth are held
constant). SAS techniques thus require a high degree of accuracy
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in the measurement of the position of the sonar platform, its
attitude, and the sound speed of the ocean medium [5], [7]. If
these requirements are not met, then the resulting beamformed
image results in artifacts, such as widening of the point spread
function (blurring), periodic aperture errors (grating lobes), and
increase in the background noise level [decrease in image signal
to noise ratio (SNR)] [8].

There are several methods in the literature that address how
to handle poor quality images. These can be classified as either
autofocus (which seeks to provide a correction to the image to
provide better focus [9], [10]), and image quality assessment [11]
(which seeks to determine whether or not a particular image is
suitable for a down-stream application). Recent work on image
quality mostly has relied on finding strong, small point scatterers
in sonar images [12], [13], [14], and measuring their width
compared to the diffraction limit [15]. These techniques have
two primary drawbacks: 1) speckle is always imaged at the
diffraction limit of the aperture (thereby biasing the focus esti-
mate towards better performance), and 2) strong scatterers tend
to be larger than a resolution cell, and may not be good candidates
for measuring the system’s degree of focus (biasing the focus
estimate towards worse performance). Complex seafloors tend
to have regions of large, high amplitude scatterers [14], such as
gravel, and rocky outcrops [16], [17].

To address these deficiencies, we propose using an alternative
approach of training a classifier to determine whether an image is
corrupted by a particular artifact. In this work, a novel perturbed
data set is developed whereby images with good focus are
corrupted with several types of image artifacts, following the
imaging physics exactly. Then, a deep neural network (DNN) is
trained to recognize whether an image has been perturbed by a
given error, effectively detecting presence or absence of specific
imaging artifacts using a single label as a decision. These images
were perturbed with only a single type of error as a first step to
assessing image quality of real data. A more realistic approach
would be to use a multilabel multiclass classifier, since field data
may contain many types of image artifacts. The simpler model
was adopted here to answer the question of whether a machine
model could reliably detect the presence of specific imaging
errors.

To make reliable decisions, models should output well-
calibrated uncertainty measures along with predictions. While
traditional deterministic neural networks do output probabilities
for each class, these probabilities often poorly represent true pre-
dictive uncertainty [18]. In contrast, Bayesian neural networks
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(BNNs) are designed to provide better-calibrated probabilities
that more accurately reflect model uncertainty [19], [20]. BNNs
achieve this by modeling uncertainty in the network param-
eters themselves, allowing for the quantification of epistemic
uncertainty (model uncertainty) in addition to aleatoric uncer-
tainty (data uncertainty). This capability is particularly valuable
in tasks like SAS artifact detection, where understanding the
model’s confidence in its predictions is crucial. BNNs model the
uncertainty of each prediction and produce calibrated probabil-
ities (meaning that as high uncertainty samples are discarded,
the classification performance with respect to a relevant metric
such as F1-score increases) [21], [22], [23], [24], [25], [26].
This enables the quantification of uncertainty in prediction and
ensures the uncertainty is calibrated, which is critical for many
remote sensing and real-time autonomous applications. Further,
calibrated uncertainty can identify patterns in data and features
that may be missed by traditional deep learning algorithms
with deterministic weights. We demonstrate that the estimated
bulk uncertainty of Bayesian deep learning (BDL) in imaging
artifact predictions, quantified through entropy, correlates with
the underlying seafloor texture increasing interoperability of
model prediction outputs.

The contributions in this work are 1) creation of a novel data
set to study imaging artifacts in SAS, 2) use of a DNN to estimate
which type of artifact is present in a given image tile, 3) use of
BNN to examine the uncertainty of artifact classification, and 4)
linking classifier performance to the image scintillation index
(SI) as quantitative metric of image texture.

The rest of this article is organized as follows. In Section II,
the methodology is presented, including the data set that was
created, and a short overview of the BDL technique used.
Section III presents the results of this study. Discussion of these
results is given in Section IV, and a link between classification
performance and image texture is given. Finally, Section V
concludes this article.

II. METHODOLOGY

A. Data Set

The field data were collected using the HISAS 1032 interfer-
ometric SAS system carried by FFI’s HUGIN HUS autonomous
underwater vehicle (AUV) [27]. Data were collected from dif-
ferent areas, four were in Norwegian waters and one in the
Mediterranean Sea off the coast of Italy, with varying terrain
and varying unknown seafloor types. The vehicle altitude was
between approximately 15 and 30 m. The SAS center frequency
is 100 kHz, and the bandwidth is 30 kHz. The SAS images
were constructed using the backprojection algorithm, where an
estimated render plane based on sidescan bathymetry is used,
and micronavigation is applied for navigation correction [5]. The
theoretical resolution in the images is approximately 3.5 cm×
3.5 cm, and the grid resolution is chosen to be 2 cm × 2 cm.
In total, 28 SAS images were selected, all considered to be of
good quality, with the exception of one of the test set images,
which was obviously corrupted.

To facilitate model development and evaluation, we divided
our data set into the following four distinct sets.

Fig. 1. SAS image degradation scheme. In the diagram, Nav stands for
navigation and Env stands for environment.

TABLE I
DATA SET CLASSES

1) Training set: Used for model training, comprising the
majority of our data.

2) Train-dev set: A subset of training data used to tune
hyperparameters and monitor for overfitting.

3) Dev set: Used for model selection and performance eval-
uation during development.

4) Test set: Comprised of three full images (Test Images I–III)
from areas not seen in the other sets, used for final model
evaluation and case studies.

In order to produce realistic SAS images of degraded quality,
we apply the following procedure (see Fig. 1): We start with
the sonar data, the estimated geometry, and the micronavigation
solution for the good quality image.

We then either
1) add a sound speed error to be used in the SAS imaging,

which will cause defocusing since SAS is nearfield imag-
ing,

2) add a yaw error to the navigation solution to produce
uncompensated crab, which will produce periodic errors
along the synthetic aperture and thereby grating lobes in
the images, and

3) add Gaussian complex noise to the image after imaging
and applying range-dependent gain. The noise is modelled
to have the same spectral shape as the backscattered signal
to simulate the spatial and temporal filtering of the system.
The noise is added after imaging in order to approximately
obtain range independent SNR reduction.

A thorough discussion of these types of errors can be found
in [8]. Together with the original images, this scheme resulted
in four different classes listed in Table I. The degradations were
serious enough that they could be visually identified as poor
quality images by the authors, who primarily work on mine
countermeasures and seabed texture. The choice of what degree
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Fig. 2. Example of one of the 28 images from our data set (see Table II, area 3) with and without degradations listed in Table I. The red framed area shows a
zoomed in detail of size 10.3 m × 4 m, whereas the total image covers 180 m × 70 m. Top left: original image. Top right: degraded with sound speed error. Bottom
left: degraded with noise. Bottom right: degraded with yaw error.

TABLE II
DATA SET OVERVIEW

of perturbation to use is not unique and could be explored in a
future study.

Fig. 2 shows an example image from the data set without any
artifacts as well as each of the three degradations.

In Table II, there is a brief overview of the data. We log scale
the acoustic intensity and truncate the dynamic range to 60 dB
prior to splitting data into images used for model development
and model testing. The goal with such data partition is to ensure
that the model does not overfit on the underlying spatial texture
distributions. Of the 28 total images, three were removed from
the overall data set pool and set aside for test set. Two of those
three images were from new areas with seafloor type that is not
contained in the other 25 images. The remaining 25 images are
split into training, train-dev and dev data sets utilizing the fol-
lowing strategy. Each image is split into regions, where there are
subregions of 1500 × 1500 pixels (30 m × 30 m) contributing to
dev and train-dev data and the rest of the image is contributing to
the train data, see Fig. 3. To further diversify splits we utilize two
strategies as illustrated in Fig. 3(a) and (b) that we independently
evaluate as data sets throughout the manuscript. This schema is
then applied over all 25 images used in the training data set. To
summarize

1) break dev and train-dev sub-regions [1500 × 1500 pixels
(30 m × 30 m) for each subregion, see Fig. 3] into 300 ×
300 nonoverlapping pixel patches (6 m × 6 m).

2) break training region per image into 300 × 300 patches
such that they are 50% overlapped to maximize the amount
of data available for training.

3) combine all of the dev, train-dev, and training patches into
dev, train-dev, and training data sets.

The overlap between patches in the dev data (dev sub-regions)
was intentionally avoided to maintain the independence of
patches for statistical analysis of the model’s performance. Simi-
larly, nonoverlapping patches were used for the train-dev data for
the same reasons. However, due to the relatively small number
of images available, an overlap of 50% was used on the training
set only to artificially create additional images. This procedure
results in four times as many images as without using overlap.
Overall, such an approach resulted in producing a training data
set per strategy of approximately 84 k samples and 5 k train-dev
and dev samples each. We emphasize that the three images
removed from the overall pool of 28 images are not split into
subregions and are preserved as is for use test set to enforce
independent analysis. Inference on these images, referred to
as image I–III in the rest of the manuscript, is conducted on
nonoverlapping patches of 300 × 300 pixels (6 m × 6 m) to
produce heat maps of predictions and uncertainty analysis.

B. Variational Inference (VI) in BNNs

BNNs combine the ability of DNN to recognize complex
patterns and relationships with the principled parameter estima-
tion in probabilistic models. An advantage of such an approach
over the standard deterministic neural networks is the ability to
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Fig. 3. Illustration of split strategies where image segments extracted for dev
and train-dev are outlined in red and blue respectively. Rest of the image is
used for training data. In (a) and (b), we depict the specific segments that we
utilized over all images regardless of the image size. (a) Split strategy I. (b) Split
strategy II.

provide an estimate of uncertainty, and to better self-regularize in
training [28], [29]. These aspects are achieved by incorporating
a prior probability distribution over the weights of a neural net-
work, p(ω), with the goal of quantifying a posteriori uncertainty
over the network parameters, p(ω | D), given a data set D. This
is in contrast to deterministic neural networks where each weight
is modeled as a single scalar parameter, ω.

Given a neural network model, M, parameterized by the
neural network weights ω ∈ Ω, where Ω represents all weights
and biases of a neural network architecture, and a supervised
learning data set D = {(xi, yi)}Ni=1, where xi ∈ Rd and
yi ∈ {1, 2, . . . , c}; N denotes sample size, d is the dimension of
the input feature space and c is the number of classes; One can

introduce an inference task that needs to be solved

p (y∗|x∗,D) =

∫
Ω

p (y∗|x∗, ω) p (ω|D) dω (1)

where x∗ is a new input feature vector (e.g., test data), and y∗ is
the class predicted by the model during inference.

Numerically solving (1) is intractable as one would have to
explore an infinite space of posterior forms [20]. As a result,
the posterior p(ω|D) needs to be approximated. VI is one of
the methods that can be used to approximate inference and
has numerical advantages on large-scale data over sampling
methods, such as Markov chain Monte Carlo (MC) [30], [31].
VI involves an optimization approach to approximate p(ω|D)
by fitting an approximation qθ(ω) ≈ p(ω|D) indexed by a vari-
ational parameter θ [20]. The intuition behind this approach is
that one limits the possible solution space by a family of prob-
ability distributions. A member of that family of predetermined
distributions qθ(ω) ∈ Q that is closest to the posterior is found
via optimization. Typically, one would measure the distance
between the two distributions in terms of Kullback–Leibler (KL)
divergence [32], which leads to following formulation of the
optimization problem:

θ� = argmin
θ

[
KL[qθ(ω) || p(ω|D)]

]
(2)

where

KL[qθ(ω) || p(ω|D)] :=

∫
Ω

qθ(ω) log
qθ(ω)

p(ω|D)
dω. (3)

The minimization problem in (2) can be posed as an opti-
mization problem with the goal of minimizing negative evidence
lower bound (ELBO) loss [20]

Lq = KL[qθ(ω) || p(ω)]− Eq [log p (D|ω)] (4)

where E represents the expected value. This loss function en-
compasses both the data-dependent likelihood loss, and the
prior-dependent term that acts as a penalty in optimization.
The prior term is also referred to as the complexity cost [33].
For more theoretical details about VI and ELBO we refer the
interested reader to Blei et al. [20]. We note that for a deter-
ministic neural network, the negative log-likelihood term in (4)
serves a similar purpose to loss functions, such as categorical
cross-entropy loss [32] for a multiclass classification problem,
or mean-squared error loss for regression with Gaussian output
assumption [19]. However, in BNNs, this term appears as an
expectation over the approximate posterior and is part of a
broader optimization objective (the ELBO) that includes the KL
divergence term. The KL divergence acts as a regularizer on
the network weights, penalizing deviations of the approximate
posterior from the prior. This approach to optimization through
ELBO allows BNNs to balance fitting the data with maintaining
appropriate uncertainty in the model parameters. Maximizing
the ELBO (or minimizing the negative ELBO in practice) en-
courages both good data fit and a reasonable distribution over
model parameters.

The complexity of the optimization of (4) is related to the
complexity of the variational family Q as it is easier to optimize
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Fig. 4. Comparison of MC dropout and flipout methods. MC dropout randomly deactivates neurons, while flipout perturbs all weights independently for each
sample.

over simpler families with fewer parameters, given that the
posterior is approximated by qθ(ω) via VI.

C. Bayesian Approximation Methods

In this work, we consider two approaches, a popular Bayesian
approximation termed MC dropout, with a Bernoulli prior over
the weights [34] and a mean-field approximation via a Gaus-
sian posterior (and prior) with a flipout MC estimator of KL-
divergence [35]. Fig. 4 illustrates the key differences between
these methods.

1) MC Dropout: MC dropout [34] applies a Bernoulli prior
over the weights, randomly deactivating neurons during both
training and inference. This approach is widely popular [36] as
it requires minimal changes to existing architectures and does
not increase the number of model parameters.

During forward passes, MC dropout effectively samples from
an approximate posterior over networks by applying dropout
masks

y = f(W(m� x)), m ∼ Bernoulli(p) (5)

where m is the dropout mask, W are the weights, x is the
input, f is the activation function, and � denotes element-wise
multiplication.

In practice, this means that during each forward pass, a ran-
dom subset of neurons is “turned OFF” according to the dropout
probability p. This creates a form of model averaging, as each
forward pass effectively uses a different subnetwork. During
training, the same dropout mask is applied to all samples in a
mini-batch, but different masks are used between mini-batches.

2) Flipout: Flipout [35] uses a mean-field approximation
with a Gaussian posterior and prior, employing a MC estima-
tor of the KL-divergence. Unlike MC dropout, flipout creates
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pseudoindependent weight perturbations for each example in a
mini-batch, decorrelating gradients between samples.

This is achieved by

Wn = W +ΔW � (rns
�
n) (6)

yn = f(Wnxn) (7)

where ΔW is a shared perturbation, and rn and sn are random
sign vectors specific to each example n in the mini-batch.

In flipout, each sample in a mini-batch effectively sees a differ-
ent set of perturbed weights. This is computationally efficient as
it allows for parallelization across samples in a mini-batch. The
shared perturbation ΔW ensures some consistency, while the
random sign vectors provide the independence between samples.

While flipout doubles the number of model parameters due to
its parameterized distributions, it can achieve better uncertainty
calibration than MC dropout [22], [24], [37]. This means the
F1-score increases more rapidly as high-uncertainty predictions
are discarded. In addition, flipout’s gradient decorrelation im-
proves the conditioning of the Hessian and reduces variance
under certain conditions [35].

Flipout has consistently outperformed MC dropout in large-
scale remote sensing applications by providing better calibrated
uncertainties [21], [22], [24], [37], [38]. For further details on
applying these methods to uncertainty quantification in remote
sensing tasks, we refer readers to [22], [24], [37], and [38].

D. Uncertainty Quantification With BNNs

For a multiclass classification problem with C classes, the
predictive probability based on the last c-dimensional linear
output layer of a neural network with parameter vector ω can be
represented as fω = (fω

1 . . . fω
c ). The predictive probability is

given by

p(y∗ = c | x∗, ω) = p(y∗ = c | fω(x∗))

= softmax(fw(x∗)) (8)

where the softmax function is commonly used to normalize
the linear output from a neural network [32] for a multiclass
classification task.

For a trained BDL model, prediction uncertainty can be
calculated by marginalizing over the approximate posterior dis-
tribution qθ(ω) using MC integration [39] with M samples to
calculate the mean predictive probability from (1)

p(ŷ = c | x∗,D) ≈
∫

p(ŷ = c | x∗, ω)qθ(ω)dω

≈ 1

M

M∑
m=1

p(ŷ = c | x∗, ω̂m)

≈ 1

M

M∑
m=1

p̂cm = p̄c (9)

where ω̂m ∼ qθ(ω) and c represents the true class (e.g., “Yaw”
error or “No Artifact”). A single class is assigned based on
(9) and the highest mean predictive probability. Intuitively, in
inference we sample from the model weights for the given input

TABLE III
OVERALL NETWORK ARCHITECTURE UTILIZING CUSTOM RESNET BLOCKS

multiple times producing an ensemble of predictions, with the
final prediction being an ensemble average.

Uncertainty can be quantified via predictive entropy. Nor-
malized predictive entropy measures the average amount of
information contained in the predictive distribution and for a
multiclass classification problem is given by

H∗
p(ŷ | x∗) = −

C∑
c=1

p̄c
log p̄c
logC

(10)

where C represents the number of all possible classes [40].

E. Architecture Choices and Training Methodology

Rather than focusing on optimizing model architectures for
the task of detecting imaging artifacts with SAS we adopt a well
understood ResNet 20 model to conduct our experiments [41],
[42]. To provide a comprehensive view of our model architec-
ture, we present the overall network structure in Table III. This
table details the layers and operations used in our ResNet-20
based model. The input to our model is a 300×300×1 grayscale
image patch, which is processed through a series of residual
blocks as shown.

For our Bayesian variants, we modify the standard ResNet
blocks as illustrated in Fig. 5. This figure shows the architectural
differences between the deterministic, MC dropout, and flipout
implementations of our residual blocks.

Our model processes each 300 × 300 pixel image patch
independently, effectively operating as a region-based classifier.
For a full SAS image, we divide it into nonoverlapping 300 ×
300 pixel regions. The output layer of our model consists of a
dense layer with 4 units, corresponding to our four classification
categories (no artifact, sound speed, SNR, Yaw). This is followed
by a softmax activation function to produce class probabilities.
These architectural choices allow our model to effectively cap-
ture the complex features present in SAS imagery while provid-
ing the flexibility needed for our Bayesian implementations.

We have previously demonstrated in applications that both
residual network (ResNet) architectures [41] and custom con-
volutional neural network (CNN) models can work well in BDL
configurations [21], [22], [38] for remote sensing application
and on large scale data sets with both MC dropout and flipout
approaches.

ResNet architectures for Bayesian experiments were adopted
in identical configuration as the deterministic architecture by
following the approach in [43]. Moreover, we adopt the iden-
tical configuration of Bayesian ResNet blocks as depicted in
our previous work by Ortiz et al. [37]. Flipout convolution
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Fig. 5. (a) Illustrates the architecture of a standard deterministic ResNet block. (b) Showcases the modified ResNet block incorporating MC dropout, featuring
additional dropout layers following each convolutional operation. These dropout layers remain active during both training and inference stages. Green highlights
indicate modifications from the baseline deterministic configuration. (c) Presents the ResNet block adapted for the flipout method, where conventional convolutional
layers are substituted with their flipout counterparts. Orange highlights indicate modifications from the baseline deterministic configuration.

layers [35] were implemented utilizing the Tensorflow Prob-
ability library [44]. We implemented MC dropout following the
approach of Nado et al. [45], inserting dropout layers after each
activation layer that follows a convolution within the residuals
of the original deterministic model. The exception is the convo-
lution layer immediately preceding a skip connection, where no
dropout is applied. Importantly, dropout is retained during both
training and inference [19].

All of the developed models used the same training strategy
in order to provide a fair comparison of the performance. The
model weights were initialized using He initialization [46].
Batch size was set at 128 due to memory limitations. We used
the Adam optimizer [47], with starting learning rate of 0.001
and default parameters in TensorFlow.

Learning rate annealing was implemented through monitoring
of the validation loss. The rate was reduced by a factor of five if
there was no improvement in validation loss within 50 epochs. In
order to regularize for overfitting we employed an early stopping
strategy [32]. If early stopping did not occur, a model would train
for a total of 2000 epochs.

We employed batch normalization in our network architec-
ture, which is a standard practice in deep learning to stabilize
training and improve generalization. Batch normalization uses
a running mean and variance estimate per pixel, where the
ensemble is the batch of data being processed. This type of
normalization is useful for standardizing the data for input into
deep learning models. While normalization techniques can be
beneficial, it’s important to note that SAS data has unique char-
acteristics due to imaging geometry, acoustic propagation, and
beamforming processes. For example, the variance of the SAS
intensity typically increases as a function of range [48], [49], and
batch normalization would remove this trend within a patch. This
type of normalization could also introduce artifacts if a given
batch contained systematic variations in acoustic intensity that
are not present in the entire data set (such as discontinuities in
seafloor scattering strength). If a relatively homogeneous patch
is normalized using a running mean estimated from strongly
textured images, the resulting normalized image may have a
spatially varying mean and variance. It is standard practice in
deep learning to randomize the creation of batches from the data
set to avoid this problem, and we follow this practice.

Even though the normalization technique used here has
drawbacks, our results demonstrate that the model successfully
learned meaningful features and relationships from the SAS
data. As discussed below (see Section III-C), the strong cor-
relation between our model’s performance and the underlying
physical attributes of the seafloor texture, as evidenced by the
relationship between uncertainty estimates and the SI, suggests
that the network effectively captured relevant SAS-specific
patterns and artifacts. The randomized batches have to some
extent dealt with the problem of statistically non stationary
normalization coefficients. Future work could explore SAS-
tailored normalization methods (such as constant false alarm
rate normalizers), or texture-specific coefficients that account
for the physical realities of acoustic imaging and heterogeneous
seafloor environments.

In our previous work [50], we explored various data augmen-
tation techniques, both standard computer vision augmentations
as well as pseudocoloring [51], for a SAS image classification
task. We selected only along-track flip technique for the data
augmentation in our experiments presented here, based on the
findings in [50]. This choice was informed by a comprehensive
study we conducted on various data augmentation techniques for
SAS imagery, including both computer vision and SAS-specific
methods. Key findings showed that augmentations preserving
SAS imaging physics generally improved model performance,
while those violating physical principles often degraded it. No-
tably, along-track flipping improved accuracy from 86.7% to
88.2%, while across-track flipping reduced it to 81.0%. Flip-
ping the images along the sonar track direction retains physical
consistency and increased model accuracy in the prior experi-
ments. This approach aligns with recommendations from other
literature in the sonar community [3], [51], [52]. Interestingly,
some nonphysical augmentations like zoom (± 20%) showed
surprising benefits, improving accuracy to 92.0%. However, for
this study, we focused on the physically consistent along-track
flip to maintain the integrity of the SAS imaging process. For a
full analysis of augmentation effects on SAS artifact detection,
readers are referred to our detailed study [50].

All of the models were trained using distributed training
on four NVIDIA V100 GPUs. Flipout models training time
was roughly doubled compared to deterministic models which
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is consistent with the findings in [35]. MC dropout models
were comparable in training to the deterministic counterparts,
with less than 10% difference on averaged epoch run time mid
training.

F. Model Selection

Typically for a multiclass classification task [32] when train-
ing multiple models one can select among using accuracy (Acc),
precision (Prec), recall (Rec), and F1-score. For the Bayesian
models an additional commonly used selection metric is the
mean negative log likelihood (MNLL): [53], [54], [55], [56]

Acc =
TP + TN

TP + TN + FP + FN

Prec =
TP

TP + FP

Rec =
TP

TP + FN

F1 =
2 · Prec · Rec
Prec + Rec

MNLL = −
(

1

N

∑
log(p(xc))

)
(11)

where TP and TN are true-positives and true-negatives, FP and
FN are false-positives and false-negatives, N is the number of
samples in the dev data set, and p(xc) is the probability the model
assigns to the true class label.

Accuracy measures the fraction of correct predictions out of
the total predictions on a data set. However, for imbalanced data
sets, accuracy can be misleading, so precision, recall, and F1-
score better assess model performance. Notably, our data set
is class-balanced, so accuracy equals the F1-score. Precision
describes the fraction of predicted positives that are actually
correct, while recall is the fraction of samples from each class
correctly classified. The F1-score combines precision and recall
as their harmonic mean, with 1 being the best and 0 the worst. For
Bayesian model selection, we use MNLL. Since it is desired for
models to generalize to new data, MNLL compares the model’s
predicted distribution to the true distribution on an independent
dev set. Lower MNLL indicates the model distribution is closer
to the underlying dev data distribution [57]. We used the scikit-
learn library [58] in order to calculate model selection metrics.

III. RESULTS

We first examine the performance of the deterministic ResNet
architecture on two split strategies, see Fig. 3. To regularize for
overfitting and to expand the data set we augmented the data by
applying along-track flip, a common data augmentation used on
SAS images [3]. Performance between the two split strategies
were comparable, see Tables IV and V, with Split Strategy II
slightly better than split strategy I. Overall, the average F1-score
for Split Strategy I was 0.884 and 0.897 for split strategy II. Per
class performance is comparable between the two strategies as
well. Here, the lowest performing skill is the estimation of Yaw
artifacts, with split strategy I producing an F1-score of 0.798 and
split strategy II achieving F1-score of 0.805. Going forward with

TABLE IV
SPLITS STRATEGY I: DETERMINISTIC RESNET20

TABLE V
SPLIT STRATEGY II: DETERMINISTIC RESNET20

TABLE VI
SPLITS USE TEST ACCURACY RESULTS

TABLE VII
MODEL PERFORMANCE

the analysis we focused only on split strategy I which provides
a marginally better baseline for a generalized image training
approach given that if the images cannot be split evenly as above
for split strategy II, see Fig. 3, the locations of the patches may
not be trivial to determine. Selecting the top quarter of each
image for dev and train-dev is a simpler and more reproducible
strategy while providing spatial separation between the dev and
train-dev data.

Similar conclusions are drawn from inference on two of
the three standalone images where performance statistics are
spatially averaged over the whole image (standalone image I has
considerable existing errors and ground truth is unknown). As
an example, average accuracy per image varies approximately
2% depending on the strategy utilized to develop the splits that
the model is trained on, see Table VI.

A. Bayesian Methods

A comparison of the Bayesian methods tested is given in
Tables VII and VIII. Flipout performed the best of three methods,
having the lowest MNLL and the highest accuracy. This is
expected, in part, as a result of how these methods approximate
the posterior. As described earlier, MC dropout uses model
weights from the deterministic prior, whereas flipout uses an
explicitly Gaussian prior.

Flipout is able to reduce the variance between the model and
the underlying data distribution. As observed from Table VIII,
the MC dropout model presents a large deviation between the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: NPS Dudley Knox Library. Downloaded on May 28,2025 at 16:24:46 UTC from IEEE Xplore.  Restrictions apply. 



ORESCANIN et al.: CLASSIFICATION OF IMAGING ARTIFACTS IN SYNTHETIC APERTURE SONAR WITH BAYESIAN DEEP LEARNING 9

TABLE VIII
PER CLASS MODEL PERFORMANCE

precision and recall values for each class, as much as 0.248.
The flipout and deterministic performance is more leveled; the
largest deviation in either is 0.034. This highlights the larger
variance produced from the MC dropout model. For the above
reasons, we chose to focus on the flipout model for detailed
uncertainty quantification as we utilize MNLL as a Bayesian
model selection criteria.

To assess the statistical significance of our results, we em-
ployed a bootstrapping approach using our Bayesian proba-
bilistic models. For each model, we performed 20 iterations,
each using 25 randomly selected inferences from a total of 500
available inferences. We calculated the mean accuracy and 95%
confidence intervals for these subsets. The confidence intervals
were computed using the t-distribution, assuming normality of
the sampling distribution of the mean. Our analysis yielded the
following results:

1) MC dropout model: mean accuracy of 0.8712 with a 95%
confidence interval of (0.8708, 0.8717).

2) Flipout model: mean accuracy of 0.9272 with a 95%
confidence interval of (0.9268, 0.9276).

Based on these results, we can conclude that differences in
accuracy of 0.1% or greater are statistically significant (p< 0.05)
for our models. The nonoverlapping confidence intervals be-
tween our MC dropout and flipout models indicate a statistically
significant difference in their performance.

While we did not calculate confidence intervals for all metrics
and tables we expect similar levels of precision across our other
performance metrics. Throughout our results, we consider dif-
ferences of 0.2% or greater as potentially statistically significant.
However, we emphasize that statistical significance does not
always imply practical significance, especially for very small
differences. Readers are encouraged to consider the practical
implications of performance differences in the context of specific
applications.

B. Uncertainty Calibration

To properly characterize the uncertainty, we begin with an
analysis of the relationship between the predictive entropy H∗

p

and the F1-score. This analysis was conducted on our dev
set, which serves as our primary evaluation set for model
performance and uncertainty calibration. In Fig. 6, we examine
how removing (or discarding) the most uncertain data from this
dev set improves the F1-score. By using the dev set for this
analysis, we ensure that our uncertainty calibration assessment
is performed on data that the model did not see during training
or hyperparameter tuning, providing a reliable estimate of the

Fig. 6. Plot of calibrated uncertainty for the two different Bayesian models
used here. A well calibrated model should have a monotonic dependence
between data percentage retained and F1-score. Flipout has a higher score than
dropout for a given data percentage, and therefore is the preferred model in this
work.

model’s generalization performance and uncertainty calibration
on new, unseen data. This process is known as verifying un-
certainty calibration [22], [23], [59] and is utilized in this work
as an additional Bayesian model selection criterion. An ideal
curve would asymptotically, and monotonically reach the upper
right corner of the plot and would represent a model that has
100% accuracy with very low uncertainty. Given that flipout
performance is not ideal we can increase from an F1-score of
0.92 to an F1-score of 0.98 by only dropping 20% of its data.
MC dropout would need to discard closer to 40% of its data to
achieve the same F1-score.

C. Uncertainty Quantification on a Test Set

To provide a fair assessment of uncertainty, we analyzed
the uncertainty on three images that are not part of the model
development and Bayesian selection data set, known as the
test set here. These images are labeled Images I–III and come
from regions 3, 5, and 4, respectively, as described in Table II.
Images I and II were collected under good conditions (i.e.,
similar to the train, train-dev set, and dev set). Image III was
collected during environmentally challenging conditions with
with multiple severe artifacts. This situation is referred to as
a noisy label. Images I and II were rebeamformed such that
artifacts were induced as in the first 25 images, and Image III is
left as is because of the preexisting artifacts.
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Fig. 7. Test image I: Uncertainty analysis for rocky seafloor area. The image, SI predictions, and entropy for each prediction are shown. (a) Original image.
(b) Scintillation index. (c) No Artifact entropy. (d) No artifact predictions. (e) Sound speed entropy. (f) Sound speed predictions. (g) SNR entropy (h) SNR
Predictions. (i) Yaw entropy. (j) Yaw predictions. In the images, the horizontal axis is the along track direction in meters and spans 180 m, and vertical is the across
track direction spanning 70 m. In (a) the color represents the decibel scaled image, in (b) color represents scintillation index, in (c), (e), (g), and (i) color shows the
dimensionless prediction entropy, and in (d), (f), (h), and (j) colors show categorical artifact prediction.

We analyze the test images in terms of the SI that quantifies
relative variance in image intensity. SI is defined as follows:

SI =
E[I2]

E[I]2
− 1 (12)

where I is an array of the intensity values of a patch of pixels
and E[x] is the mean of some quantity x . For this analysis (both
for SI and inference), we use nonoverlapping patches of 300
× 300 pixels, consistent with our approach for the test images
as described in Section II-A. These patches correspond to the
individual inputs to our neural network and determine the grid
resolution in our visualization plots (see Figs. 7–9). This patch
size balances capturing sufficient local detail for artifact detec-
tion while maintaining computational efficiency. Intuitively, a

low SI would correspond to smooth textureless surfaces that
consist of mostly independent, exponentially distributed pixel
intensities [60, Ch 16]. A high SI can be caused by spatially
varying average intensity, such as high-amplitude glints from
rock outcrops [16], [17], [61], or from an area with uniform
intensity, but which also has a single-point heavy-tailed intensity
distribution [48], [49], [62], [63], [64], [65].

At first, we analyze image I, which shows a richly textured
rocky bottom separated by a mud channel, see Fig. 7(a). Not
surprisingly, SI is low in the homogeneous mud channel and
high over strongly textured rock surfaces. Overall, the model
performs well over all classes as evident in Fig. 7(d), (f), (h), and
(j). Sound speed predictions indicate some misclassification in
the mud channel, Fig. 7(f), which is correlated with the high
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Fig. 8. Image II: Uncertainty analysis for sandy seafloor area. The image, SI predictions, and entropy for each prediction are shown, similar to 7. (a) Original
image. (b) Scintillation index. (c) No Artifact entropy. (d) No artifact predictions. (e) Sound speed entropy. (f) Sound speed predictions. (g) SNR entropy (h) SNR
Predictions. (i) Yaw entropy. (j) Yaw predictions. In the images, the horizontal axis is the along track direction in meters spanning 180 m, and vertical is the across
track direction in meters spanning 90 m. In (a) the color represents the decibel scaled image, in (b) color represents scintillation index, in (c),(e) ,(g), and (i) color
shows the dimensionless prediction entropy, and in (d), (f), (h), and (j) colors show categorical artifact prediction.

uncertainties, see Fig. 7(e). Yaw is the most challenging to
classify in the mud channel, although the model performs well in
the high SI region over rocks. Overall, as can be seen in Fig. 7(c),
(e), (g), and (i) the uncertainty trends inversely with the SI for
Yaw estimation and can be higher for other classes in the mud
channel. In general, we see that patches of high uncertainty lead
to an incorrect model prediction.

The next test image is of a sandy bottom with visible trawl
lines, image II shown in Fig. 8. Overall, SI is very low, since

the seafloor is relatively homogeneous. The trawl lines provide
the only source of texture and slightly elevated SI is seen near
them. Sound speed, SNR, and Yaw artifacts are overall correctly
classified, see Fig. 8(f), (h), and (j), while the No Artifact class
is misclassified as Yaw, see Fig. 8(d). Low uncertainty estimates
are associated with the SNR artifact prediction, followed by
moderate uncertainties on sound speed while high uncertainty
estimates are associated with both Yaw and No Artifact classi-
fications. Note that the trawl marks were not seen in the train,
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Fig. 9. Image III: Uncertainty analysis for a rippled seafloor with severe existing imaging artifacts (no induced perturbation). Only the overall predictions and
entropy are shown for the original image. This image was not perturbed as the other dev images were, due to the existing imaging errors. (a) Original image.
(b) Scintillation index. (c) Entropy. (d) Predictions. In the images, the horizontal axis is the along track direction in meters spanning 180 m, and vertical is the
across track direction in meters spanning 100 m. In (a) the color represents the decibel scaled image, in (b) color represents scintillation index, in (c), color shows
the dimensionless prediction entropy, and in (d) color shows categorical artifact prediction.

train-dev, or dev sets, so this image represents out of distribution
test data, and it makes sense that performance is worse compared
to image I.

In Image III, see Fig. 9, we examine a rippled, sandy seafloor
area collected during challenging surface wave and ocean cur-
rent conditions (a significant amount of heave, vertical and hori-
zontal crab). This introduced a nonlinear track and uncertainties
in the navigational parameters needed for accurate beamform-
ing, meaning that multiple artifacts are likely present in the
image. Because of these factors, we do not present accuracy re-
sults, and only present the original image, SI, prediction entropy,
and the class predictions per patch. Since the Bayesian model
classifies most of the image as having yaw and sound speed
errors, our single-class classification picks up on the presence
of multiple artifacts as fluctuations in the predictions. Our model
uncertainty is high throughout the homogeneous region near the
bottom of the image where artifacts are hard to perceive. Given
the underlying navigational issues, the proper way to address this
classification problem would be using a multilabel classifier with
potential simultaneous artifacts. Since the single-class classifier
has issues with a realistic image with multiple perturbations, we
perform a controlled study with multiple induced artifacts in the
next section.

D. Multiple Induced Artifacts Case Study

To better understand our model’s performance in more com-
plex, realistic scenarios, we conducted a case study investigating
the impact of multiple simultaneous artifacts on SAS image
quality assessment. We focused on Image I as our base image
to introduce multiple artifacts since it contains textures similar

TABLE IX
SOUND SPEED AS A MAJOR ARTIFACT

to those present in the training set. We introduced one major
artifact along with one or two minor artifacts and evaluated
our model’s performance. For major perturbations, we used
sound speed errors of 40 m/s, SNR degradations of 5 dB, or
yaw errors of 0.35◦. Minor perturbations were set at lower
levels: 20 m/s for sound speed, 10 dB for SNR, and 0.2◦ for
yaw. Tables IX–XI present the results for cases where sound
speed error, SNR degradation, and yaw error were the primary
artifacts, respectively. These two cases represented acceptable
versus unacceptable perturbations given the authors experience
in target detection and seafloor characterization.

We report the standard F1-score, as well as two addi-
tional metrics: Top2Acc (Top-2 Accuracy) and Top2F1 (Top-2
F1-score). Top2Acc measures the frequency with which the
correct label appears in the model’s top two predictions, while
Top2F1 is the F1-score calculated based on considering both
top predictions as correct. These metrics provide insight into
the model’s performance when dealing with multiple artifacts,
as they capture cases where the model identifies the primary
artifact as its second most likely prediction. This approach allows
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TABLE X
SNR AS A MAJOR ARTIFACT

TABLE XI
YAW AS A MAJOR ARTIFACT

us to evaluate how our single-label classifier performs in more
complex, realistic scenarios where multiple artifacts may be
present simultaneously.

The results in Tables IX–XI reveal several key insights about
our model’s performance in multiartifact scenarios. First, the
model demonstrates high sensitivity to SNR degradation. When
SNR is set to 5 dB, it dominates the prediction regardless of other
artifacts present, as evidenced by the drop in the F1 score to 0
in Tables IX and XI. This result aligns with the basic properties
of SAS images, as noise can mask subtle features indicative of
other artifacts (such as bright points). Sound speed errors of
40 m/s are well detected even with minor yaw errors present
(F1 = 0.97, Table IX), but performance drops significantly
for 20 m/s errors (F1 = 0.65). This suggests that the model
is more sensitive to larger sound speed errors, which cause
more noticeable defocusing in SAS images. Yaw error detection
shows inconsistent performance, with good results for isolated
0.2◦ errors (F1 = 0.92, Table XI) but struggles when combined
with other artifacts. This reflects the challenge of detecting
yaw errors in SAS images, especially when there are other
degradations present. The discrepancies between F1-scores and
Top2 metrics [66], particularly for yaw errors, indicate that the
model often identifies the correct artifact, but not always as its
top prediction. This suggests that in practical SAS applications,
considering the top two predictions might provide more robust
artifact detection. Overall, these results underscore the complex-
ity of SAS artifact detection in multierror scenarios and highlight
the limitations of our single-label approach, pointing toward the
need for a multilabel classification model for real-world SAS
applications.

IV. DISCUSSION

From the three test images, a few key results can be gleaned.
The SI trends mostly inversely with uncertainty for two classes
(Yaw and No Artifact). Patches with low SI can make image
quality assessment challenging. This result is in concord with
the prior literature on synthetic aperture autofocus, where quanti-
tative metrics for image texture are used as weighting functions

for phase estimators [10]. It is possible that a mechanism for
learning textural features could be incorporated into our model
as an additional source of information that could inform uncer-
tainty.

Inaccurately classified patches often have high uncertainty.
This relationship validates the calibrated uncertainty results in
Fig. 6, however, results in Fig. 9 raise the question of the impact
of texture on uncertainty calibration. We trained models on
simulated artifacts, but real-world data can have inherent errors
from hardware or environmental issues, as Fig. 9 reveals. BNNs
provide the ability to estimate epistemic uncertainty [19] or
model uncertainty. This enables identifying potentially inaccu-
rate predictions in challenging areas where artifacts are hard to
predict.

The most common confusion by the model is the relationship
between Yaw and No Artifact, however, the error correlates
well with the uncertainty. The physical effects of a yaw error
are difficult to spot by the model. This makes physical sense
because uncompensated yaw results in grating lobe copies of
strong, isolated targets, and results in a reduced contrast for more
homogeneous textures (and can often look like an image with
lower SNR). Thus, areas with relatively homogeneous textures
are easily confused with areas corrupted by uncompensated yaw.
Also, perhaps larger image patches need to be used, since iso-
lated grating lobes may appear outside the tile being analyzed. It
may be advantageous to use a traditional signal processing-based
approach to estimate yaw, given that its physical effects are
relatively well understood [8].

V. CONCLUSION

This work demonstrates the effectiveness of BDL for artifact
detection and uncertainty-aware perception using SAS. We gen-
erate a labeled data set by emulating common artifacts through
precise beamforming perturbations. BNNs provided reliable
confidence estimates by modeling uncertainty. This enabled
identifying potentially inaccurate predictions in areas where
artifacts are hard to perceive.

Our experiments demonstrated that Bayesian techniques can
accurately classify emulated artifacts while producing well-
calibrated uncertainty estimates. Seafloor texture strongly af-
fected model performance, indicating texture analysis could
further improve reliability. By filtering out doubtful predictions,
uncertainty awareness enhanced classification accuracy.

Reliable perception is critical for AUV. Bayesian learning of-
fers a pathway to safeguard missions by quantifying model limi-
tations. This work establishes Bayesian networks as a promising
technique for explaining model behavior. The uncertainty esti-
mates enable monitoring model reliability even when external
factors like weather degrade performance.

The results of this work only apply to a single sensor collected
in several different geographic regions. To apply our methods to
a new sensor, the ideal case would be to create an a similar data
set using the imaging perturbations. However, it may be possible
to use transfer learning, beginning with the weights of this model
and training the model on data from a different sensor, similar to
the work performed by Williams [67] in the context of ATR. A
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study to determine the effectiveness of this approach is fruitful
area of future research.

One drawback of this study was that a single label classifier
was used. In real field data several perturbations are present
and future work could use a multilabel classifier. The degree of
image perturbations (e.g., a sound speed error of 40 m/s) was
chosen using intuition gained by the authors’ collective work
on target detection and seafloor texture modeling. However, the
thresholds for classifying imaging errors by a model designed
for this purpose are not yet known, and should be ascertained
by future work. In this case, a data set with a wide distribution
of imaging errors would have to be created.

In conclusion, this research introduces a principled framework
for uncertainty-aware deep learning in SAS. The core technical
contributions establish strong baseline capabilities using simu-
lated artifacts. Future work can build upon these results to refine
real-world reliability. Overall, BDL provides the transparency
and robustness needed for safe autonomy in complex underwater
environments.

ACKNOWLEDGMENT

The authors would like to thank the HUGIN AUV operators
and researchers at the Norwegian Defence Research Establish-
ment (FFI, Kjeller, Norway) for gathering the data. The authors
would also like to thank NATO Centre for Maritime Research
and Experimentation (CMRE, La Spezia, Italy) for hosting and
organizing trials.

REFERENCES

[1] C. Heinrich, P. Feldens, and K. Schwarzer, “Highly dynamic biological
seabed alterations revealed by side scan sonar tracking of Lanice conchi-
lega beds offshore the island of SYLT (German bight),” Geo- Mar. Lett.,
vol. 37, no. 3, pp. 289–303, 2017.

[2] H. Singh, J. Adams, D. Mindell, and B. Foley, “Imaging underwater for
archaeology,” J. Field Archaeol., vol. 27, no. 3, 2000, Art. no. 319.

[3] D. P. Williams, “Underwater target classification in synthetic aperture
sonar imagery using deep convolutional neural networks,” in Proc. 23 rd
Int. Conf. Pattern Recognit., 2016, pp. 2497–2502.

[4] A. Galusha, J. Dale, J. Keller, and A. Zare, “Deep convolutional neu-
ral network target classification for underwater synthetic aperture sonar
imagery,” in Detection and Sensing of Mines, Explosive Objects, and
Obscured Targets XXIV, California, USA: SPIE, 2019, pp. 18–28.

[5] R. E. Hansen, H. J. Callow, T. O. Sæbø, and S. A. V. Synnes, “Chal-
lenges in seafloor imaging and mapping with synthetic aperture sonar,”
IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, p. 3677–3687,
Oct. 2011.

[6] P. Vouras et al., “An overview of advances in signal processing techniques
for classical and quantum wideband synthetic apertures,” IEEE J. Sel.
Topics Signal Process., vol. 17, no. 2, pp. 317–369, Mar. 2023.

[7] H. J. Callow, “Signal processing for synthetic aperture sonar image
enhancement,” Ph.D. dissertation, Univ. Canterbury, Christchurch, New
Zealand, Apr. 2003.

[8] D. A. Cook and D. C. Brown, “Analysis of phase error effects on stripmap
SAS,” IEEE J. Ocean. Eng., vol. 34, no. 3, pp. 250–261, Jul. 2009.

[9] W. G. Carrara, R. S. Goodman, and M. Majewski Ronald, Spotlight
Synthetic Aperture Radar: Signal Processing Algorithms. Norwood, MA,
USA: Artech House, 1995.

[10] I. D. Gerg and V. Monga, “Real-time, deep synthetic aperture sonar (SAS)
autofocus,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2021,
pp. 8684–8687.

[11] R. E. Hansen and T. O. Saebo, “Towards automated performance assess-
ment in synthetic aperture sonar,” in Proc. MTS/IEEE OCEANS - Bergen,
Jun. 2013, pp. 1–9.

[12] D. J. Pate, D. A. Cook, and B. N. ODonnell, “Estimation of synthetic
aperture resolution by measuring point scatterer responses,” IEEE J.
Ocean. Eng., vol. 47, no. 2, pp. 457–471, Apr. 2022.

[13] M. Geilhufe, R. E. Hansen, Ø. Midtgaard, and S. A. V. Synnes, “Through-
the-sensor sharpness estimation for synthetic aperture sonar images,” in
Proc. Oceans 2019 MTS/IEEE, Seattle, WA, USA, Oct. 2019, pp. 1–6.

[14] M. Geilhufe, D. Olson, R. E. Hansen, and S. A. V. Synnes, “A wavelet
shrinkage approach to detect candidate point scatterers in synthetic aper-
ture sonar images for resolution estimation,” in Proc. 5th Int. Conf.
Synthetic Aperture Sonar Radar, Ser. Inst. Acoust.. Lerici, Italy, Sep. 2023.

[15] M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of
Propagation, Interference, and Diffracction of Light, 7th ed. Cambridge,
U.K.: Cambridge Univ. Press, 1999.

[16] D. R. Olson, A. P. Lyons, and T. O. Sæbø, “Measurements of high-
frequency acoustic scattering from glacially eroded rock outcrops,” J.
Acoustical Soc. America, vol. 139, no. 4, pp. 1833–1847, 2016.

[17] D. R. Olson, A. P. Lyons, D. A. Abraham, and T. O. Sæbø, “Scattering
statistics of rock outcrops: Model-data comparisons and Bayesian infer-
ence using mixture distributions,” J. Acoustical Soc. Amer., vol. 145, no. 2,
pp. 761–774, 2019.

[18] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger, “On calibration of modern
neural networks,” in Proc. 34th Int. Conf. Mach. Learn. Ser. Mach. Learn.
Res., Aug. 2017, pp. 1321–1330. [Online]. Available: https://proceedings.
mlr.press/v70/guo17a.html

[19] A. Kendall and Y. Gal, “What uncertainties do we need in Bayesian deep
learning for computer vision?,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, vol. 20, pp. 1–11.

[20] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” J. Amer. Stat. Assoc., vol. 112, no. 518,
pp. 859–877, 2017.
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