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Abstract
In quantitative analysis of seafloor scattering measurements, it is common to model the
single‐point probability density function of the scattered intensity or amplitude. For more
complex seafloors, the pixel amplitude distribution has previously been modelled with a
mixture model consisting of two K distributions, but the environment may have more
identifiable scattering mechanisms. Choosing the number of components of a mixture
model is a decision that must be made, using a priori information, or using a data driven
approach. Several common model selection techniques from the statistics literature are
explored (the Akaike, Bayesian, deviance, and Watanabe‐Akaike information criteria) and
compared to the authors' choice. Examples are given for synthetic aperture sonar data
collected by an autonomous underwater vehicle in a rocky environment off the coast of
Bergen, Norway, using the HISAS‐1032 synthetic aperture sonar system. The Bayesian
information criterion aligned most closely with the interpretation of both the acoustic
images and the plots of the probability of false alarm.
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1 | INTRODUCTION

Acoustic measurements of seafloor backscattering are a source
of unwanted sound in seafloor object detection [1–3] but also
provide a rich set of information regarding the seafloor
properties and structure [4–7]. The intensity in a sonar image
(i.e. a spatial map of measured backscattering) can be charac-
terised using a random process [7]. There are a variety of
metrics or features, that can be used to describe this random
process, including the autocorrelation function, power spec-
trum [8], wavelet decomposition [9], grey‐level co‐occurrence
matrix [6, 10], the mean intensity (scattering cross section)
[11, 12] and in general, the probability density function (pdf) of
the amplitude (or intensity) [13–15] and phase [16, 17].

In previous research on acoustic scattering from complex
regions such as rocky seafloors, it was found that the scattering
cross section is typically higher than sedimentary seafloors due
to the presence of large root mean square (RMS) roughness,

but in certain locations the cross section was quite low because
of locally smooth areas of rocky surfaces (low RMS roughness)
[12, 18]. To model the statistics of the scattered field, a
mixture1 pdf with two components was found to be the most
appropriate for rocky [14] and other complex areas [21, 22],
which was justified by the non‐stationary character of the
acoustic data. Each sample of the data was modelled as being
drawn from one of two distributions, for example, either from
the seafloor or man‐made structure in the case of Abraham
et al. [21], or from horizontal or vertical facets [14]. The choice
of the number of components was an a priori assumption but
may not be accurate for all environments. Statistical modelling
of acoustic measurements from rocky seafloors using mixture
models with an unknown number of components (i.e. two or
more) and estimating the most appropriate number of com-
ponents is the focus of this work.

In general, the number of components that make up a non‐
stationary sonar image is unknown, and the pdf model for each
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1
We also note that mixtures are a popular choice to model population data taking on discrete values, such as the common cold and influenza viruses [19], and more recently the SARS‐
CoV‐2 virus [20].
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component is also unknown. Both must be selected prior to
choosing a model and estimating the parameters. The more
model parameters are used (i.e. more components, or a more
complex statistical model for each component), the better the
data will be fit, but the parameters may lose meaning, in that
the parameters have higher uncertainty and may lack a
connection to the physical environment. In this work, we
restrict ourselves to the K distribution, with a justification
given in Section 3 and focus on choosing the number of
components. We explore the use of several model selection
techniques, the Akaike information criterion (AIC ), Bayesian
information criterion (BIC ), deviance information criterion
(DIC ), and the Watanbe‐Akaike information criterion
(WAIC ). These techniques penalise more complex models in
different ways. We also use the log‐likelihood ðL Þ, the
Kolmogorov–Smirnov (KS) test and the modified upper‐tail
Anderson–Darling (AD) test to characterise the model‐data
fit. In this paper, we compare these model selection criteria
to intuition gained from examining the sonar images as well as
visual inspection of the probability of false alarm plots.

This paper is organised as follows. A description of the
sonar data used in this work and example images are given in
Section 2. The background statistical modelling and model
selection techniques are given in Section 3. Results are pre-
sented and discussed in Section 4, and conclusions are given in
Section 5.

2 | DATA

The measurements used in this work are synthetic aperture
sonar (SAS) images collected off the coast of Bergen, Norway,
by the Norwegian Defence Research establishment (FFI). The
platform used for these measurements is the HUGIN‐HUS
autonomous underwater vehicle (AUV), using a HISAS‐1032
interferometric SAS. This sonar system has a centre fre-
quency of 100 kHz and a bandwidth of 30 kHz. The beam-
formed data is oversampled on a grid with 2 � 2 cm
resolution. Data that is used for statistical analysis is decimated
by a factor of three in each dimension to reduce the correlation
between samples due to the point spread function of the sonar
system. Independent samples are necessary for the form of the
joint‐likelihood function described in Section 3. Seafloor tex-
tures may have mean intensity correlations due to patchiness,
and correlation due to speckle. If neighbouring samples are
more closely‐spaced than the mainlobe width of the point
spread function, then samples may have correlated speckle.
The number three was chosen to balance our desire to reduce
the correlation between samples and to not throw out any
environmental information. We also note that if the two point
correlation function is modelled, then it would be appropriate
to use correlated non‐Gaussian scattering models, such as
those described by Oliver and others [23, 24].

An example image is shown in Figure 1. The image con-
sists of an exposed rock outcrop, with sedimented areas in
between. To show the detailed environmental structure, two
tiles are plotted in Figures 2 and 3, both of which are

600 � 600 pixels, or 12 m per side. The blue and red boxes in
this figure show where these tiles were extracted from. These
tiles comprise two data ensembles that are used to fit statistical
models and apply model selection techniques. Although the
SAS images have both magnitude and phase for each pixel,
only the complex magnitude (termed “amplitude” in this work)
is studied here. The phase may also provide information
regarding the nature of scatterers and should be studied in
future work [16].

Both tiles show that the rock structure consists of a low
intensity uniform scatterer that varies continuously due to
undulations in the rock structure. The continuous variations
in intensity are punctuated by bright lines due to fractures,
and steps created by glacial erosion, and dark regions
composed of either shadows or regions tilted away from the
sonar array. These features are distinguishable due to their
different intensities, and the SAS system has a high enough
resolution that discrete scatterers in the environment are
resolved. Therefore, a mixture model is appropriate for
modelling the pdf of the ensemble consisting of the pixels
from each tile.

The empirical distribution of the data is shown as the
probability of false alarm (pfa), because it is a common way
of presenting sonar reverberation statistics [13, 25, 26]. The
pfa, PF (A) is defined as 1 − P(A), where P(A) is the cu-
mulative distribution function (cdf), and A is the amplitude.
This quantity is shown versus normalised amplitude for each
tile in Figure 4, tile 1 in (a) and tile 2 in (b). The normalised
amplitude is calculated by taking the ensemble of data sam-
ples for each tile and dividing each point by the RMS
amplitude of the ensemble. The data from tile 1 shows a
slight “knee” (change in slope) near normalised amplitudes of
2 and 4. These changes in slope of the log(PF (A)) indicate
different components that make up the model. The log(PF
(A)) of tile 2 has more pronounced knees in the curve, near
the normalised amplitudes of 2, 6, and possibly 14, although
the last one is more uncertain due to the finite sample size
being more evident at high amplitudes (i.e. the pfa curve
becomes more stair‐case like, rather than a smooth curve). In
log(PF (A)) versus A space, a Rayleigh distribution curves
downward, a K distribution consists of a straight line, and
anything heavier than a K curves upward (such as a gener-
alised Pareto) [14, 21].

3 | BACKGROUND

In this section, the basic definitions, statistical models, and
model selection definitions are given. The data for each
ensemble are given in the form of an N1 � N2 array of
amplitude values, where the samples are statistically uncor-
related with each other. Uncorrelated samples are obtained
by decimating the beamformed acoustic data so that its
spatial bandwidth in the along‐track and across‐track di-
mensions are equal to the sampling spatial frequency [27].
In this case, decimation by a factor of three in each
dimension achieves this goal. The total number of samples
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F I GURE 2 Tile 1, taken from the 12 � 12 m blue region of Figure 1.
This tile consists of flat portions of smooth rock, dropstones, and a
fractured face (in the uppermost region).

F I GURE 3 Tile 2, taken from the 12 � 12 m red region of Figure 1.
This tile consists of flat portions of smooth rock, several small fractures,
and a vertical face to the left.

F I GURE 1 An example SAS image, plotted as a function of along track distance on the horizontal axis and across track distance on the vertical axis. The
colour scale in decibels is referenced to the maximum intensity in the image, since the system is uncalibrated. The blue and red boxes mark the adjacent regions
from which tile 1 and tile 2 were extracted (shown in Figures 2 and 3).

is N = N1N2. The random variable for normalised intensity
is denoted I , and the normalised amplitude random var-
iable is A ¼

ffiffiffiffiffi
I
p

. We denote the pdf of the normalised
amplitude (also termed complex envelope in some

communities [13, 28]) by p(A), with A being a member of
the population.

We use K distributions to model the individual compo-
nents of the SAS images. In previous work analysing the same
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dataset [29], a Rayleigh model was used for the low amplitude
portions of the image, and K distributions were used for the
rest of the amplitude range. A drawback of that work was that
the Rayleigh model did not provide a good fit to the lowest
amplitudes when the number of components was small, and
examination of the data revealed that the darkest portions of
the image were not shadows. Note that even in regions of
shadow, grating lobes and other imaging artefacts [30] may be
present and result in non‐Rayleigh statistics.

The K distribution has been shown to be an appropriate
model for a wide range of statistically stationary seabed types
[13, 27, 28]. It has the additional advantage of having a
meaningful physical interpretation resulting from the modula-
tion of the power of a Rayleigh distribution [31–34] or a finite
number of scatterers [28, 35]. The K distribution contains the
Rayleigh model as a sub‐member, so if the lowest amplitude
portions of the image are truly composed of additive Gaussian
noise, the mixture model will have a high shape parameter for
that component and accurately represent a Rayleigh distribu-
tion. Compared to other more flexible models (such as the
generalised Pareto), it does not have pathological properties
such as infinite moments [14, 36, 37].

A K distribution for the scattered field amplitude has the
following form [28]:

pKðAjλ; αÞ ¼
4
ffiffiffi
λ
p

ΓðαÞ

�
A
ffiffiffi
λ
p

�α

Kα−1

�
2A
ffiffiffi
λ
p

�

; ð1Þ

where Γ(⋅) is the gamma function, Kν(x) is the modified Bessel
function of the second kind of order ν with argument x, λ is
the scale parameter of the K distribution, and α is the shape
parameter. The expected value of the intensity (I = A2) for this

model is E[A2] = αλ and is denoted σ. In the results below, the
K distribution is parameterised using the pair (σ, α) rather than
the scale and shape parameters. When used in a mixture dis-
tribution, the parameters have subscripts m to denote which
component the parameters correspond to; that is, σm and αm.

Mixture models are formed by a weighted sum of indi-
vidual pdf components. The physical meaning of this type of
model is that every measurement in a population, or sample,
can be identified with one of the M components. The weights
of the distributions, wm, are normalised such that ∑wm = 1,
and therefore the weights can be interpreted as the fraction of
pixels corresponding to each component.

The form of the mixture models used here is as fol-
lows [38]:

pðAjθÞ ¼
XM

m¼1
wmpKðAjσm; αmÞ; ð2Þ

where M is the number of mixture components, θ is a vector of
length k = 3M − 1, consisting of the parameters of the model
wm, σm and αm. The weights are subject to the constraint
∑mwm = 1, and so the weights constitute M − 1 independent
variables. The variance parameters are sorted from lowest to
highest values (σ1 < σ2 < … < σM). The parameters of this
mixture model are found using the expectation‐maximisation
(EM) algorithm [38, 39]. This method maximises a slightly
altered version of the log‐likelihood for each component, but
asymptotically maximises the likelihood function for mixture
models [39]. An EM method for mixtures of two components
for common clutter models is given in ref. [21], and a gener-
alisation of that method is used in this work. We also differ
from Abraham et al. [21] in that a finite‐difference based

F I GURE 4 The empirical probability of false alarm, PF (A) = 1 − P(A) for tile 1 (a), and tile 2 (b), as a function of normalised area, A.
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gradient method is used for the maximisation step for the K
distributions, rather than using the moment‐based method
described in that work (which we have found to be unreliable).

Since the number of components that constitutes the envi-
ronment is in general unknown, model selection techniques are
used to pickM, the number of K distribution components. AsM
increases, it is better able to match the pdf of the measurement,
but at the cost of more uncertainty per parameter [14, 40]. The
joint likelihood function, ℓ(θ|A), is a common metric for
model‐data fit and is a component of many of the model se-
lection techniques described her. It is defined for N independent
samples by the following equation:

ℓðθjAÞ ¼ ∏
N

n¼1
pðAnjθÞ; ð3Þ

where An is the n − th member of the ensemble, and p(An|
θ) = ℓ(θ|An) is the likelihood function for an individual data
sample. The parameter vector θ̂ that maximises ℓ is called the
maximum likelihood estimate. It is common to work with the
log‐likelihood, L ¼ logðℓÞ, which is given as follows:

L ðθjAÞ ¼
XN

n¼1
logðpðAnjθÞÞ: ð4Þ

Later in this work, these quantities are abbreviated as
L ðθÞ ¼ L ðθjAÞ for the joint log‐likelihood, L nðθÞ¼
logðpðAnjθÞÞ for the per‐sample log‐likelihood, and
ℓn(θ) = ℓ(θ|An) for the per‐sample likelihood. Other methods
for estimating parameters exist, such as the method of moments
used by Abraham and others for the K distribution [21, 41].
However, the method of moments is not guaranteed to be un-
biased or reach minimum variance, and we prefer use of the
maximum likelihood method.2

More complex models typically result in a higher likelihood
function, but it may be broader in parameter space (implying a
large parameter variance and larger uncertainty), so L alone
cannot be used as a basis on which a decision about M can be
made. There exist various model selection techniques, some of
which are based on Bayesian concepts [40] and are called
“information criteria”, with smaller values preferred. Two
simple metrics are based on the log‐likelihood function, but
with an additional penalty that depends on the number of
parameters, k.

The Akaike information criterion [40, 42, 43], is a simple
penalisation of the log‐likelihood function evaluated at the
maximum likelihood estimate. This form is based on an
asymptotic approximation of the posterior probability density
function (ppd) of parameters θ given the data, p(θ|A) and is
given by

AIC ¼ −2L
�
θ̂
�
þ 2k: ð5Þ

This criterion is the simplest explored here.
The Bayesian information criterion is defined as fol-

lows [44],

BIC ¼ −2L θ̂ þ logðNÞk; ð6Þ

where θ̂ is the maximum likelihood estimate of θ. This crite-
rion results from an asymptotic (i.e. large N) Gaussian
approximation of the marginal likelihood (also called the evi-
dence). The penalty to the log‐likelihood is therefore a func-
tion of the number of parameters, which is due to the ppd
becoming narrower as N becomes asymptotically large. It has
been criticised for inappropriately penalising complex models
and for improperly treating the prior distribution in the
approximation of the ppd [45].

Both the AIC and BIC are based on the log‐likelihood
function evaluated at θ̂ and therefore may be sensitive to the
numerical estimate. Additionally, point estimates do not
contain any information about the ppd as a whole (since they
are based on asymptotic estimates) and are thus insensitive to
whether the likelihood function is narrow or broad near θ̂ . The
final two model selection criteria are based on Monte‐Carlo
Markov chain (MCMC) samples drawn from the posterior
distribution of the parameters given the data. The details
behind MCMC sampling are beyond the scope of this paper,
and the reader is directed to Gelman et al., [40] for a more in‐
depth general treatment, and Dettmer et al., [46] for practical
applicaions of MCMC techniques in ocean acoustics. In basic
terms, the ppd p(θ|A) is the pdf of the parameters of a model
θ given the data A. Bayes' theorem states that

pðθjAÞ ¼
pðAjθÞpðθÞ

pðAÞ
ð7Þ

where p(A|θ) is the joint likelihood function, p(θ) is the prior
pdf of the models (incorporating anything known about the
model parameters that is not inferred from the measured data),
and the probability of the data, p(A), in the denominator en-
sures that integrating the ppd yields unity. In this work, uni-
form priors are used. The mixture weights are constrained to
lie between 0 and 1, and the property ∑wm = 1 is enforced by
performing the search on the first M − 1 values of wm, and
computing wM ¼ 1 −

PM−1
m¼1wm. The K distribution parame-

ters for the Mth component are unaffected by this equality
constraint, and so are used in the Markov chain in the typical
way. Additionally, the constraint

PM−1
m¼1wm < 1 is used as part

of the prior to ensure that a model with larger M is not strictly
equivalent to models with smaller M, which can happen when
one of the weights is zero and can lead to a singular model.
The variance and shape parameters were each constrained to
the intervals σm ∈ [0, 400] and αm ∈ [0, 40], respectively. These
bounds on the K distribution parameters are set to save
computational resources. A K distribution with a shape
parameter that tends to infinity approaches a Rayleigh distri-
bution, and very small changes are observed for ν > 40. The

2
It may be possible that some function of the moments could be used to construct an
unbiased minimum variance estimator, according to the Lehmann‐Scheffe theorem [58].
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constraint on σ is used to prevent this parameter from being
much greater than the largest intensity sample in either data set.

To compute draws of θ from its ppd, the popular
Goodman–Weare (GW) affine MCMC sampler [47] is used
here, using an implementation in MATLAB [48]. The GW
algorithm samples directly from p(θ|A) given a functional
form for the likelihood function and the priors, by using an
ensemble of walkers of size NW that exchange information at
each step. MCMC samples drawn from the posterior distri-
bution are denoted by θl, where l indexes the sample number
and ranges from 1 to L with L being the number of MCMC
samples. The initial portion of the MCMC draws from each
walker contains a burn‐in period of increasing variance of each
parameter before it plateaued. The variance was computed by
estimating the sample variance over the ensemble of walkers
for each MCMC step. The burn‐in portion was about 2000
samples for each walker and was discarded. Since 20 � k
walkers were used, this means that between 200,000 and
560,000 samples were discarded. Before discarding the burn‐in
samples, each MCMC run had 1.5 million samples.

The deviance information criterion was proposed by
Spiegelhalter and others [49, 50] as a more Bayesian version of
the AIC [40]. The DIC is calculated using MCMC samples as
follows:

DIC ¼ −2L
�
θ̂Bayes

�
þ 2pDIC ; ð8Þ

where

θ̂Bayes ¼ EðθjAÞ ¼
1
L

XL

l¼1

θl ð9Þ

is the posterior mean of the MCMC parameter estimates
(calculated as the mean over l for each element of the
parameter vector), and pDIC is an estimate of the effective
number of parameters. This quantity is computed by the
following equation:

pDIC ¼ 2

 

L
�
θ̂Bayes

�
−
1
L

XL

l¼1

L ðθlÞ

!

: ð10Þ

DIC appears to be a popular improvement over the point
estimates used in AIC and BIC. It is more Bayesian–
incorporating the posterior distribution in the penalty term
and the posterior mean θ̂Bayes as an estimate of the parameters
in the log‐likelihood term. However, it has been criticised for
not being fully Bayesian, and that the effective number of
parameters pDIC could become negative in certain cases [40,
50]. There exists an alternative version of pDIC based on the
variance, pDICalt ¼ 2var½L ðθlÞ�, computed as the posterior
variance taken over the ensemble of MCMC draws. This results
in an alternative formulation of the DIC [40],

DICalt ¼ −2L
�
θ̂Bayes

�
þ 2pDICalt: ð11Þ

Both DIC and DICalt are used here as potential model
selection criteria.

The last information criterion considered here is an update
to the DIC, termed the Watanabe‐Akaike information criterion
[51, 52] (although it was initially referred to as the “widely‐
applicable information criterion” by Watanabe). It is motivated
by an asymptotic approximation to leave‐one‐out cross vali-
dation and also relies on MCMC samples of θ drawn from p(θ|
A). The WAIC uses the likelihood function calculated for each
data sample; that is, instead of a point estimate of the pa-
rameters it utilises their posterior distribution. The criterion is
calculated as follows:

WAIC ¼ −2lppd þ 2pWAIC ; ð12Þ

where the log pointwise predictive density, lppd, is computed
as follows [53]:

lppd ¼
XN

n¼1
log

 
1
L

XL

l¼1

ℓnðθlÞ

!

: ð13Þ

The effective number of parameters pWAIC is the sum over
data samples of the posterior variance of the log‐likelihood of
an individual sample,

pWAIC ¼
XN

n¼1
Vn; ð14Þ

where

Vn ¼
1

L − 1

XL

l¼1

�
L nðθlÞ − L nðθlÞ

�2
ð15Þ

is the posterior variance for sample n for a given model, and
L nðθlÞ ¼ ð1=LÞ

PL
l¼1L nðθlÞ [53]. WAIC can be considered

fully Bayesian. Unlike the other information criteria presented
here it can evaluate predictions used for new data in a Bayesian
context and tends to be more reliable also for complex
models [40].

In the radar and sonar communities, there are other
commonly used goodness of fit criteria, that express how well
a model fits a data set. The KS test [54] is a comparison
between the empirical cdf and the cdf produced by a model.
One of metrics of this test is the p‐value, which is related to
hypothesis rejection. If the p‐value is larger than some
threshold (typically 0.05), then the hypothesis that some
proposed distribution is the correct choice is not rejected. In
this framework, higher p‐values give an indication of better
model fit and the model is not rejected, and smaller ones
result in a given model being rejected. Other statistical tests
are designed for cases in which the lower or upper part of the
data are desired to be weighted more strongly. In sonar and
radar measurements, false detections tend to arise from the
large amplitude portion of the pdf, and therefore it is
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common to use the AD test statistic modified to emphasise
the upper tails [55]. p‐values from both the KS test and
modified upper‐tail AD test are presented in this work and
denoted pKS and pAD, respectively. Note that the KS and AD
tests are not model selection techniques, like the information
criteria described earlier but rather are designed to reject
models based on some significance level [54].

4 | RESULTS AND DISCUSSION

4.1 | Model‐data comparison

K mixture models were fit to the amplitude data shown in
Figures 2 and 3, using M varying between 2 and 5 components.
Also included are a single K distribution, and the Rayleigh
distribution for reference. The model‐data fit is shown
graphically in Figure 5 for both tiles in terms of the log(PF (A)).

Model‐data fits for both tiles are poor for both the Ray-
leigh and single K distributions. This behaviour is expected
because the images in Figures 2 and 3 contain clusters of very
high amplitude pixels, indicating that several different scat-
tering mechanisms are responsible for the scattered field. Next,
the K mixture with M = 2 (KM2 in Figure 5a,b) fit extremely
poorly. The low amplitude region is modelled well, but above a
normalised amplitude of 3 or 4 in tile 1, the KM2 and data
curves depart quite severely. As the number of components is
increased, the model‐data fit becomes remarkably good, for
both tiles. A mixture of three K distributions fits the tails quite
well, and increasing the number of components does not seem
to noticeably improve the fit. For tile 2, the M = 4 and 5 case
(KM4 and KM5 in the legend) provides a slight improvement
near the very high amplitude tails, compared with M = 3. Even
with this slight improvement for models with M > 3, the

authors own intuition suggests that M = 3 is the preferred
model. This assessment is compared to the automated model
selection results in 4.3.

4.2 | MCMC marginal PDFs

Given MCMC draws from the posterior, the two‐dimensional
marginal distributions for each parameter combination and the
one‐dimensional marginal distributions for each parameter
(termed a “corner plot”) can be used to visually inspect the
parameter correlations. For models with low uncertainty in
their parameter estimates, the widths of the parameters will be
small and uncorrelated with other parameters. In the asymp-
totic case with a non‐singular statistical model, and a large data
sample, these tend towards bi‐variate Gaussian distributions
[40], but in the finite data case they can be non‐Gaussian. The
marginal distributions are constructed using a two‐dimensional
kernel smoothed density pdf estimator using the MCMC
samples and a one‐dimensional histogram, as implemented in
ref. [48].

In Figure 6, the marginal pdfs for tile 1 are plotted, with
the same values of M as in the pfa plot in Figure 5. The
marginals for tile 2 are plotted in Figure 7. The simplest
mixture model, M = 2 is plotted in the upper left of each plot.
The 1D marginals (on the diagonal) appear to be approxi-
mately Gaussian, as do the 2D marginals in the off‐diagonal
subfigures. This behaviour indicates that the M = 2 model is
statistically very well behaved, although it does not fit the data
well. The marginal ppd of w1 and w2 is a single line with slope
of negative unity, since the constraint w2 = 1 − w1 is enforced.
Next, the M = 3 models are plotted in the upper right of each
figure. The 1D marginals deviate more from a Gaussian
appearance and have significant skew. In particular, σ3, and

F I GURE 5 The probability of false alarm for the data from tile 1 (a) and 2 (b), compared to the various mixture models explored here.
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especially α2 and α3 appear skewed, meaning that there is more
uncertainty in the estimates of these parameters.

In the M = 4 case for tile 1, the behaviour is broadly similar
to the M = 3 case, except that the marginal distribution for α1

(the shape parameter of the mixture component with the
lowest amplitude) is almost uniformly distributed. For tile 2,
the M = 4 marginal distribution has a similar near uniformity
for α1, but also a very large variance of σ4. The parameters of
σ2 and σ3 for tile 2 have a bi‐modal behaviour in the 1D and
2D marginals, in addition to having a large variance. These
parameters indicate that at least part of the information about
the parameters of the mixture is highly uncertain. For M = 5 in
the lower right corner of Figures 6 and 7, the same uniformity
is seen in α1. For tile 2, σ5 is nearly uniform, while for tile 1 it is
much more peaked, although it still has a large variance. In tile
1 and M = 5, marginal pdfs for the weights (w2 and w3),
multiple maxima are evident, indicating that the model un-
certainty is not narrow enough to distinguish each component

from each other. For tile 2, the pdfs appear unimodal, but are
quite wide. This behaviour is possible with singular statistical
models [52]. A consequence of this uncertainty is that mixtures
with large numbers of components seem to be statistically
poorly behaved. Of the models with well‐behaved marginal
ppds, only the M = 3 model performs well in terms of model‐
data fit, as seen in Figure 5.

4.3 | Model selection results

As model section criteria, the log‐likelihood ðL Þ, BIC, AIC,
DIC, DICalt, WAIC, and p values from the KS and AD tests
are shown for both tiles in Table 1. For each tile, the best
performing model in each column is shown in boldface. The
maximum L value for both tiles is the five component model.
This result is expected, since more complex models in general
provide a better fit. The simplest information criterion, AIC,

F I GURE 6 One‐ and two‐dimensional marginal posterior probability distributions of the mixture model parameters from tile 1 resulting from MCMC
simulations of (a) two K components, (b) three K components, (c) four K components, and (d) five K components. The posterior pdfs of the two component
model appear to be Gaussian, and the shapes of the marginal pdfs tend to become less Gaussian and more skewed as the number of components is increased.
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has the lowest value for the five component model, in agree-
ment with the maximum likelihood. For both tiles, the smallest
BIC is for the three component model. The penalty for model
complexity (quantified in the BIC as the number of

parameters) is more severe than for AIC, since there are 40,000
data samples in each tile. If log(N) > 2 (it is approximately 10.6
in this case), then the BIC will be smaller than the AIC for the
same model. The BIC seems to give a very simple trade off

F I GURE 7 One‐ and two‐dimensional marginal posterior probability distributions of the mixture model parameters from tile 2 resulting from MCMC
simulations of (a) two K components, (b) three K components, (c) four K components, and (d) five K components. Many of the same conclusions as the corner
plot from tile 1 (Figure 6) can be drawn here as well.

TABLE 1 Model selection results for
both image tiles, including the parameters of
L , AIC, BIC, DIC, DICalt, WAIC, pKS,
and pAD.

Data Model L AIC BIC DIC DICalt WAIC pKS pAD

Tile 1 KM2 −12,271 24,552 24,595 24,539 29,323 24,553 0.00 0.00

KM3 −12,211 24,438 24,506 24,400 24,483 24,438 0.65 0.97

KM4 −12,200 24,423 24,517 24,381 24,478 24,423 0.69 0.93

KM5 −12,195 24,419 24,539 23,762 25,075 24,417 0.99 0.99

Tile 2 KM2 −4752 9513 9556 9516 15,709 9515 0.00 0.00

KM3 −4655 9327 9395 9321 9337 9327 0.53 0.74

KM4 −4648 9317 9412 8934 9743 9321 0.89 0.94

KM5 −4641 9311 9431 9125 9506 9311 0.99 0.99

Note: In each column, the best value is shown in bold.

OLSON and GEILHUFE - 9
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between model complexity and accuracy that agrees with the
intuition described in the interpretation of the pfa plots in
Figure 5, and the interpretation of the images (Figures 2 and 3)
in Section 2, its theoretical drawbacks non‐withstanding [45].
The DIC selected best model were M = 5 for tile 1 and M = 4
for tile 2. Using the variance‐based DICalt gave different re-
sults, M = 4 for tile 1, and M = 3 for tile 2. In both of these
cases, DICalt selected a simpler model than DIC and seems to
be slightly more biased in favour of simple models, at least for
this dataset. Both DIC and DICalt favour either the same or
slightly more complex models as BIC. WAIC, in the last
column of Table 1, favours the most complex model M = 5,
for both tiles.

Although WAIC is a commonly used model selection
metric, it seems to favour model‐data fit more than penalising
complexity, for this dataset. The WAIC is not a simple
penalisation of the log‐likelihood but is motivated by leave‐
one‐out cross validation [52, 53]. Vehtari et al. [53] suggest
that if any of the variance terms Vn from Equation (15) are
greater than 0.4, then the estimate of pwaic is unreliable. For all
values of M explored here, two of the Vn terms resulted in
values greater than 0.4, with the majority being close to 0.1 or
0.05. The data samples that crossed above the 0.4 threshold
were the two highest amplitudes in the ensemble for both tiles.
It makes sense that high amplitude outlier data samples were
poorly fit by the model (and had large variance) since these
samples are few in number and are not represented well by the
joint likelihood function that is used to perform the MCMC
sampling [47].

In terms of the p values, for both statistical tests, the values
increase as the number of terms is increased, as shown in the
two rightmost columns of Table 1. The only model that is
rejected is the M = 2 case, which has a p value close to machine
precision for both the KS and AD tests. Interestingly, the
M = 3 case for tile 1 has a higher pAD than M = 4, but M = 5
has the largest pAD value. This can be explained by the fact that
most of the error between the data and model occurs for
normalised amplitudes between 0.1 and 1, which is far from
the tails. Since the AD test emphasises the tails, the largest
errors are discounted for M = 3. The trends in the p‐values
show that as the complexity of the model grows, the better the
fit to the data is obtained. This trend is expected because the
KS and AD statistical tests are designed to reject hypotheses,
rather than choose between many alternative models and thus
do not have any penalty for complexity.

Assuming the intuition of the authors that M = 3 is the
best balance between complexity and accuracy is correct, then
BIC is the best model selection metric (in this scenario). All the
other information criteria favour more complex models. The
M = 4 and M = 5 models produced a large amount of
parameter uncertainty given the results of the MCMC simu-
lations in Figures 6 and 7. The M = 3 choice is supported by
examining the different physical effects that produce the
texture shown in Figures 2 and 3. They are composed of
medium intensity scattering from (on average) horizontal sur-
faces, low intensity scattering from portions of the surface that

are tilted away from the sonar or in shadow, and high‐
amplitude portions due to scattering from vertical facets
resulting from glacial plucking [12, 56], dropstones, or micro
cracks. It is possible that the more complex models can
differentiate between different high intensity scatterers. These
are composed of, fractured surfaces, vertical facets, and small
cracks, and are represented in the tails in Figure 5b at ampli-
tudes greater than 10. However, it is difficult to see the benefit
of differentiating these high amplitude scatterers from exami-
nation of the pfa curves. Therefore, we suggest that the
number of components shall be three.

The only information criterion that reliably produces
M = 3 as the best model is the BIC. Since the BIC is based on a
single maximum likelihood parameter estimate, it may be
numerically unstable. If a single point estimate is deemed un-
suitable for a particular statistical modelling application (such
as remote sensing or target detection performance prediction),
then the ensemble‐based DICalt could be used as a more
robust estimate (since it tends to favour simpler models).

We also note that in previous work by the authors [29], use
of a Rayleigh distribution for the lowest amplitude component
required four components to achieve the same degree of fit as
a mixture of three K distributions achieved here. Notably the
smallest BIC for the R þ KN model explored in ref. [29]
(recalculated here using the decimation factor from the present
manuscript) was for four components (one Rayleigh and
three K distributions) and had a value of 24,517 for tile 1
(which is the same as a four component mixture of only K
distributions), and a value of 9421 for tile 2 (which is larger
than the three component mixture of K distributions). This
difference in model selection criteria highlights the importance
of selecting an appropriate statistical model for the mixture
components. The use of a Rayleigh model for the lowest
amplitude scatterers in the image did not have enough
complexity for the BIC to be able to match an intuitive
partition of the image into different scatterers. A Rayleigh
distribution would be appropriate for shadows, but the darkest
areas in the image may actually be very low amplitude scat-
tering from a rock surface tilted away. Even if shadows are
present, then sidelobes and grating lobes from the SAS point
spread function [30, 57] could cause a departure from a Ray-
leigh distribution in these areas.

4.4 | Generalisation to the complete SAS
image

The analysis presented in the previous subsections was
restricted to two 12 x 12 m tiles without information on how
the model selection results generalise to other types. To analyse
this, we have performed fits of the mixture models on
300 � 300 pixel tiles (6 x 6m) on the entire SAS image in
Figure 1 and used the two simplest model selection criteria,
AIC and BIC, to determine the suitable number of compo-
nents for each patch. Since simple textures were included, the
choice of a single mixture distribution was included here as
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well. DIC and WAIC were not analysed due to the enormous
computational complexity of performing MCMC sampling for
260 patches, each with approximately 104 independent
samples.

The image contains a variety of seabed textures. By visual
inspection some of the textures appear to result from a single
component, and some have clustered regions of high or low
amplitude. The model selection results for AIC are shown in
Figure 8, and for BIC in Figure 9, where the sonar image in-
tensity and model selection results have been encoded in the
hue‐saturation‐value (HSV) colour space. The colours for the

preferred model per patch have been converted from the red‐
green‐blue colorspace to HSV and are used for the hue and
saturation channels. For the value channel, we use the log in-
tensity scaled between 0 and 1.

In the AIC results in Figure 8, only four tiles were chosen
to have a single K‐distribution component, even though an
appreciable portion of the image is taken up by uniform
sediment. Many of the sedimented tiles haveM = 2 or M = 3 as
the best model, even though they do not appear to contain
much texture or structure. The rocky textures are chosen to
have M = 4 and sometimes M = 5 as the best component.

F I GURE 9 Model selection results using BIC for 300 � 300 pixel (6 � 6 m) patches from the entire SAS image in Figure 1. The colorbar indicates the
chosen mixture components between a single component, M = 1, and five components.

F I GURE 8 Model selection results using AIC for 300 � 300 pixel (6 � 6 m) patches from the entire SAS image in Figure 1. The colorbar indicates the
chosen mixture components between a single component, M = 1, and five components.
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These trends agree with the analysis of tiles 1 and 2 earlier,
where AIC tended to prefer more complex models than
intuition suggested.

Regarding BIC results presented in Figure 9, 11 tiles were
chosen to be well modelled by a single component for the
sedimented areas. Compared with four tiles for the AIC, this
indicates that the BIC is better at selecting appropriately simple
models for uniform textured images. The rest of the sedi-
mented areas has the best BIC for M = 2. Many of these tiles
contain both rocks and sediment, so the selection of M = 2 is
appropriate. The rocky areas are mostly modelled with M = 3
and occasionally M = 4. The M = 4 areas tend to have both
very bright facets and extremely deep shadows, so the decision
or M = 4 may be warranted, even though our analysis of the
two tiles in the previous two subsections indicated that M = 3
was an appropriate model. The two example tiles did not have
extremely deep shadows. Overall, BIC tends to favour simpler
models when applied to all 260 tiles in the image, which shows
that the trends examined for the two tiles do in fact generalise
well to the entire image.

5 | CONCLUSION

We presented a statistical model for SAS images of complex,
non‐stationary, rocky seafloors. This model consisted of a sum
of an unknown number of K distributions. The number of K
distributions was selected using four different model selection
criteria. The results of these criteria were compared against the
authors’ interpretation of the SAS images, and the comparison
between the empirical and model probability of false alarm. We
concluded that the BIC provided the best balance between
model complexity and goodness of fit, since it has a very severe
penalty for complex models (at least when the number of
samples is large) and is computationally simple to compute.
Interesting areas for future work would be applying this
methodology to other examples of rock outcrops, other sea-
floor textures and use with other sensors, or the same sensor in
an environment with different noise levels. This method could
also be used in the future to select models and partition images
into different scatterer classes for biological or geological
remote sensing.
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