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ABSTRACT:
The Kirchhoff integral is a fundamental integral in scattering theory, appearing in both the Kirchhoff approximation

and the small slope approximation. In this work, a functional Taylor series approximation to the Kirchhoff integral is

presented, under the condition that the roughness covariance function follows either an exponential or Gaussian

form—in both the one-dimensional and two-dimensional cases. Previous approximations to the Kirchhoff integral

[Gragg, Wurmser, and Gauss (2001) J. Acoust. Soc. Am. 110(6), 2878–2901; Drumheller and Gragg (2001)

J. Acoust. Soc. Am. 110(5), 2270–2275] assumed that the outer scale of the roughness was very large compared to

the wavelength, whereas the proposed method can treat arbitrary outer scales. Assuming an infinite outer scale

implies that the root mean square (rms) roughness is infinite. The proposed method can efficiently treat surfaces with

finite outer scale and therefore finite rms height. This series is shown to converge independently of roughness or

acoustic parameters and converges to within roundoff error with a reasonable number of terms for a wide variety of

dimensionless roughness parameters. The series converges quickly when the dimensionless rms height is small and

slowly when it is large. https://doi.org/10.1121/10.0005282
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I. INTRODUCTION

The Kirchhoff integral (KI) is extensively used in rough

surface scattering theory, appearing in the Kirchhoff approxi-

mation for acoustic waves (Ishimaru, 1978; Jackson and

Richardson, 2007; Thorsos, 1988) and electromagnetic waves

(Beckmann and Spizzichino, 1987) and the small slope

approximation for acoustic waves (Gragg and Wurmser, 2005;

Jackson and Olson, 2020; Jackson and Richardson, 2007;

Voronovich, 1994, 1985; Yang and Broschat, 1994) and elec-

tromagnetic waves (Afifi et al., 2014; Berrouk et al., 2014;

Voronovich, 1994). This integral is oscillatory, exists over a

semi-infinite domain, and decays slowly. It is thus computa-

tionally expensive to evaluate numerically. Fast evaluations of

the KI are needed for performance estimation of active sonar

systems (Ainslie, 2010; Lurton, 2010) or inversion of measure-

ments for geoacoustic and roughness parameters using scatter-

ing models (Hefner, 2015; Steininger et al., 2013; Sternlicht

and de Moustier, 2003; Pouliquen 1992).

Several efforts have been made to approximate this

integral. Gragg et al. (2001) and Drumheller and Gragg

(2001) use a von K�arm�an spectral model but take the limit

that the wavenumber cutoff parameter tends to zero, result-

ing in a pure power-law spectrum. Two complementary

series approximations are presented in their work, a Taylor

series applicable for small roughness and small grazing

angles and a rational fraction approximation that has com-

plementary applicability. In many cases, the domain of

applicability of these two series overlaps, allowing accurate

calculation of the KI. This method is useful for cases in

which the outer length scale of a rough surface is very large

compared to the wavelength. However, the resulting surface

statistics have infinite outer length scale and infinite root

mean square (rms) height. Thus, modeling scattering from

rough surfaces with finite values of these two parameters is

at present only possible using brute-force numerical integra-

tion. Another series approximation was derived earlier by

Dashen et al. (1990) for a pure power law with a spectral

exponent of 7/2.

In this work, a functional Taylor series is used to

approximate the KI. This approximation is only directly use-

ful if integer powers of the roughness autocovariance have

analytical Fourier transforms [for one-dimensional (1D)

roughness] or Fourier–Hankel transforms [for two-

dimensional (2D) roughness]. Attention is thus restricted to

two specific forms of the roughness covariance: the expo-

nential and Gaussian forms. Other forms of the covariance,

such as a modified power law, have this property but are not

commonly used as rough seafloor or terrain models. If the

series that is derived here is truncated by retaining the first

two terms, then this corresponds to the reduction of the

small slope approximation to the small roughness perturba-

tion approximation, as noted by several authors (e.g.,

Thorsos and Broschat, 1995; Voronovich, 2002). That par-

ticular simplification is valid for arbitrary covariance func-

tions but has the same limitations as for the small roughness

perturbation approximation (Thorsos and Jackson, 1989).

The series presented here is similar to the small angle series

from Gragg et al. (2001) for a pure power-law roughness

spectrum. For the series in Gragg et al. (2001), if thea)Electronic mail: dolson@nps.edu, ORCID: 0000-0002-7928-0468.
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exponential in the KI is expanded in a power series in u, the

integration variable, then the resulting series terms are inte-

ger powers of the roughness structure function, which is

related to the roughness covariance function, since the struc-

ture function obeys a power law. Since the power law has

no wavenumber cutoff and no outer scale, the series used in

Gragg et al. (2001) converges very slowly for large rough-

ness and steep angles. The series approximation developed

in this work is not restricted to small values of the rms

height but is specialized to two classes of covariance func-

tions. It also converges reasonably fast for large rms height

and large grazing angles.

In Sec. II, the basic geometrical and roughness defini-

tions are presented, along with the KI for both 1D and 2D

roughness. The series approximation to the KI is derived in

Sec. III for 1D/2D roughness and exponential/Gaussian

covariance functions. The convergence and accuracy of this

approximation is studied in Sec. IV, where it is demon-

strated that this series converges independently of the rough-

ness or acoustic parameters. It is also shown numerically

that a reasonable number of terms is required for a wide

variety of dimensionless roughness parameters. Conclusions

are given in Sec. V.

II. BASIC DEFINITIONS

Here, the basic acoustical quantities that are needed for

the KI are defined. The sound speed in the water is cw, the

acoustic frequency is f, and the acoustic wavenumber

in water is kw ¼ 2pf=cw. The incident and scattered

grazing angles are hi and hs, respectively. The incident and

scattered azimuthal angles are /i and /s, respectively.

These angles are related to the incident and scattered wave

vectors in three-dimensional (3D) scattering geometry by

ki ¼ ðkix; kiy; kizÞ; ks ¼ ðksx; ksy; kszÞ, and

kix ¼ kw cos hi cos /i ksx ¼ kw cos hs cos /s; (1)

kiy ¼ kw cos hi sin /i ksy ¼ kw cos hs sin /i; (2)

kiz ¼ �kw sin hi ksz ¼ kw sin hs: (3)

Without loss of generality, the assumption /i ¼ 0 can be

made for isotropic roughness (which we only consider here).

For 3D scattering geometry and 2D roughness, grazing

angles hi; hs have support ½0; p=2�, whereas the azimuthal

angle has support /s 2 ½0; 2p�. For 2D scattering geometry

and 1D roughness, /s ¼ p and hi; hw 2 ½0; p�, which renders

the y component of the wave vector zero.

The horizontal components of the Bragg wave vector

DK and Bragg wavenumber magnitude DK in two dimen-

sions are

DK ¼ Ks �Ki; (4)

DK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDKxÞ2 þ ðDKyÞ2

q
: (5)

The Bragg wavenumber in one dimension is

DKx ¼ ksx � kix: (6)

For 2D roughness, the interface is specified by f(x, y),

where x, y are the two horizontal coordinates. For 1D rough-

ness, we use f(x), where x is the single horizontal coordinate.

For all cases, Gaussian height statistics and wide-sense sta-

tionary are assumed. A sample rough interface is shown in

Fig. 1, along with the incident and scattered wave vectors

and their angles.

The Fourier transforms of each of these rough interfaces

are specified by

FðKxÞ ¼
1

2p

ð
f ðxÞeiKxx dx; (7)

FðKÞ ¼ 1

ð2pÞ2
ð

f ðRÞeiK�R d2R ; (8)

where K ¼ ðKx;KyÞ is the horizontal wavenumber vector of

the roughness spectrum, R ¼ ðx; yÞ is the 2D horizontal

coordinate vector, and F is the complex amplitude spectrum

of the rough interface. F is related to the power spectrum W
by

W1ðKxÞ ¼ hFðKxÞF�ðK0xÞidðKx � K0xÞ; (9)

W2ðKÞ ¼ hFðKÞF�ðK0ÞidðK�K0Þ ; (10)

where dðxÞ is the Dirac delta function.

The roughness covariance functions are denoted C1 and

C2 for 1D and 2D roughness spectra, respectively. They are

defined by

hf ðxÞf ðx0Þi ¼ C1ðx� x0Þ; (11)

hf ðx; yÞf ðx0; y0Þi ¼ C2ðx� x0; y� y0Þ ; (12)

and are related to their respective power spectra by

FIG. 1. (Color online) Geometry of the scattering problem under consider-

ation for 2D roughness and 3D scattering geometry. The rough interface is

shown in green and yellow. Incident and scattered wave vectors are shown

in blue. The incident grazing angle, hi, scattered grazing angle, hs, and scat-

tered azimuthal angle, /s, are shown in brown, and a right-handed coordi-

nate system is shown in black.
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W2ðKÞ ¼
1

ð2pÞ2
ð

C2ðRÞeiK�R d2R; (13)

W1ðKxÞ ¼
1

2p

ð
C1ðxÞeiKxx dx: (14)

For azimuthally isotropic roughness, the 2D power

spectrum is related to the 2D covariance function by a

Fourier–Hankel transform of order zero,

W2ðKrÞ ¼
ð1

0

RJ0ðKrRÞC2ðRÞdR; (15)

where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
is the horizontal coordinate magni-

tude, and Kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

x þ K2
y

q
is the radial wavenumber magni-

tude. For 2D roughness, only isotropic forms of the

roughness covariance and power spectrum are considered in

this work.

A. Roughness covariance models

The Gaussian covariance function is commonly used to

model statistical roughness with a single length scale, often

for the purposes of model validation (Broschat and Thorsos,

1997; Thorsos, 1988; Thorsos and Jackson, 1989). The

covariance functions are given for 1D and 2D roughness by

C1ðxÞ ¼ h2
1e�x2=L2

1 ; (16)

C2ðx; yÞ ¼ C2ðRÞ ¼ h2
2e�R2=L2

2 ; (17)

where L1 is the correlation length for 1D roughness, and L2

is the correlation length for 2D roughness. The notation

C2ðRÞ ¼ C2ðx; yÞ implies an assumption of azimuthal isot-

ropy. These forms have Fourier and Hankel transforms,

respectively,

W1ðKxÞ ¼
h2

1L1

2
ffiffiffi
p
p e�K2

x L2
2
=4; (18)

W2ðKrÞ ¼
h2

2L2
2

4p
e�K2

r L2
2
=4: (19)

The exponential covariance function is often a better

model for natural roughness than the Gaussian form, since it is

a power-law spectrum at high wavenumbers, with an exponent

of �2 for 1D roughness and �3 for 2D roughness (Jackson

and Richardson, 2007). The von K�arm�an form given in Chap.

6 of Jackson and Richardson (2007) is more general than the

exponential form (since it allows for a variable exponent),

although the exponential form is a special case of it. The expo-

nential covariances for 1D and 2D roughness are

C1ðxÞ ¼ h2
1e�jxjK01 ; (20)

C2ðRÞ ¼ h2
2e�RK02 : (21)

Again, isotropy is assumed for the 2D case. These covariance

functions have Fourier/Hankel transforms, respectively,

W1ðKxÞ ¼
w1

K2
01 þ K2

x

; (22)

W2ðKrÞ ¼
w2

K2
02 þ K2

r

� �3=2
; (23)

where w2 ¼ h2
2K02=ð2pÞ is the 2D spectral strength, and

w1 ¼ h2
1K01=p is the 1D spectral strength.

B. The KI

The KI is defined here for 1D and 2D roughness.

Although there are different conventions for this integral,

the form of the 2D version used here is from Jackson and

Olson (2020), and the 1D version is from Olson and Jackson

(2020). The KI for 2D isotropic roughness is

I2D
K ðgÞ ¼ e�gh2

2

ð1
0

uJ0

DKu

kw

� �
egC2ðu=kwÞ � 1½ � du; (24)

and the KI for 1D roughness is

I1D
K ðgÞ ¼ 2e�gh2

1

ð1
0

cos
DKxu

kw

� �
egC1ðu=kwÞ � 1½ � du:

(25)

In the Kirchhoff approximation (Ishimaru, 1978) and

small slope approximations for impenetrable boundaries

(Voronovich, 1985) and interfaces between fluid

(Voronovich, 1999), elastic (Yang and Broschat, 1994), and

dielectric boundaries (Voronovich, 1994), g ¼ Dk2
z , where

Dkz ¼ ksz � kiz. However, in the layered small slope approx-

imation (Jackson and Olson, 2020), g is the product between

two different quantities that are related to the vertical com-

ponent of the wavenumber in each domain. Therefore, g
can be a complex scalar. In numerical tests, only the case of

g ¼ Dk2
z is considered, although the proposed method is

valid for the general complex case.

It is illustrative to show the convergence rate of the KI

computed using the trapezoidal rule. For the trapezoidal

rule, there are two dimensionless numbers that must be

selected, umax, the upper limit of the integral (since the

semi-infinite domain must be truncated), and du, the sam-

pling interval. The number of sampling points is

Nu ¼ umax=du. This number is used as a proxy for the com-

putational cost of computing the trapezoidal rule. A true

accounting of this cost would estimate the number of float-

ing point operations, or flops, since evaluation of the inte-

grand at each point may take many flops, especially

evaluation of special functions, such as the Bessel function

of the first kind. umax should be large enough such that the

exponential functions in Eqs. (24) and (25) approach unity,

so that they cancel with the second term in square brackets.

This situation occurs when umax � kw=K0n, where K0n rep-

resents either K01 or K02. The sampling parameter should be

small enough that it captures oscillations in the cosine or

Bessel function. For the KI convention used here,
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oscillations are smallest for the specular direction, for which

DK or DKx is zero, and increase away from the specular

direction.

The convergence rate as a function of Nu for several

values of umax is plotted in Fig. 2. Four solid lines are used

to plot the relative accuracy of the 2D KI using exponential

covariance, for kwh2 ¼ 1, K02=kw ¼ 0:05, hi ¼ hs ¼ 80�,
and /s ¼ p. Specific values of umax are marked in the leg-

end. The sampling interval du was varied, and the relative

error is plotted as a function of Nu. A reference line of

0.1 dB (2.33%) relative error is plotted for reference. Over

100 points are required to obtain convergence within 2.33%.

If h2, the incident and scattered grazing angles, or K02 are

decreased, the number of points required increases. For

example, if hi and hs are both changed to 45�, then umax

should be greater than 50 kw=K02, and 1000 points are

required to achieve 0.1 dB accuracy. It is thus advantageous

to have an approximation of this integral. It is also interest-

ing to note that if umax is not large enough, then decreasing

du has little effect on the accuracy.

Given this difficulty in numerically evaluating the KI,

there have been previous efforts to approximate it. In previ-

ous approximations to the 2D KI (Dashen et al., 1990;

Drumheller and Gragg, 2001; Gragg et al., 2001), the limit

of K02 ! 0 was taken. While this may be an adequate

approximation for very high frequency systems or environ-

ments with a very large outer scale, it may not be appropri-

ate in every case. In this limit, the rms height, h2, tends to

infinity. The coherent field scattered by the surface therefore

has zero intensity, and all intensity is incoherent. For cases

where the coherent intensity is finite, this scenario is unac-

ceptable, especially if energy conservation between the

coherent and incoherent scattered field must be enforced.

To illustrate the need to model finite values of the cutoff

parameter, the backscattering cross section for several

values of the wavenumber cutoff is plotted. The spectral

strength was set to w2 ¼ 10�6 m. The sound speed ratio, �,

was set to 1.17, and the density ratio aq was set to 2.2

with the complex sound speed ratio ac ¼ �=ð1þ 0:01iÞ. The

frequency was set to 20 kHz, and the sound speed was

1500 m/s. The small slope approximation for a fluid half-

space was used to compute the scattering cross section, using

formulas in Chap. 13 of Jackson and Richardson (2007).

The outer scale was set to specific values of 0, kw/1000,

kw/100, and kw=10, and the backscattering cross section near

the specular direction is plotted in Fig. 3. The case of K02 ¼ 0

was computed using the approximations of Gragg et al.
(2001), and the finite K02 cases were computed using the

trapezoidal integration rule. At the specular direction, there

is an enormous difference in scattering strength, from

�12 to 39 dB. From this figure, it can be concluded that only

if the ratio kw=K02 is less than or equal to 10�3 does the limit

of a pure power law produce accurate results. If the specular

region is required for modeling or inversion of scattering

strength, such as for multibeam systems (Hefner, 2015;

Hellequin et al., 2003; Pouliquen, 1992; Sternlicht and de

Moustier, 2003), then a fast method is needed to compute

the KI for finite power-law cutoff parameters. Note that if

w2 is increased, then the differences between these four

cases become smaller, as the specular peak is less sharp than

it is for the value of w2 in this figure.

III. FUNCTIONAL TAYLOR SERIES APPROXIMATION

The form of the KI is that of a Fourier or Hankel trans-

form, where the function to be transformed is the exponen-

tial of the roughness covariance times g. In both the 1D and

2D KIs, the term in brackets does not have an analytic

Fourier or Hankel transform. The fact that the argument of

the exponential function has an analytic Fourier or Hankel

transform (it is just the power spectrum) can be exploited to

FIG. 2. (Color online) Convergence rate expressed in relative error as a

function of number of samples Nu used for the trapezoidal rule for several

values of umax specified in the legend. The incident and scattered grazing

angles were 80�, and the wavenumber was 8.37 radians (rad)/m. rms height

was 1/kw, and K02=kw ¼ 0:05. The 2D KI was used for this figure.

FIG. 3. (Color online) Scattering strength dependence on angle and spectral

cutoff. Several values of the wavenumber cutoff for the 2D KI were used,

which are marked in the legend. Note the great disparity near normal inci-

dence for these four cases.

4242 J. Acoust. Soc. Am. 149 (6), June 2021 Derek R. Olson

https://doi.org/10.1121/10.0005282

https://doi.org/10.1121/10.0005282


yield an efficient approximation to this integral. To achieve

this approximation, a functional Taylor series of the integral

is used, since the KI can be viewed as a functional, which

takes a function as an argument and returns a real or com-

plex number. The function argument is the roughness

covariance in this case.

A. Functional Taylor series definition

To make these results applicable to both 1D and 2D

scenarios, notation is introduced to make the functional

aspect of the KI explicit. Let FK½aðuÞ� be the functional at

the core of the KI. The function a(u) is the argument of the

functional F, which is defined as

FK aðuÞ½ � ¼
ð1

0

gðuÞeaðuÞdu ; (26)

where a(u) is gCnðu=kwÞ, Cnðu=kwÞ is either the 1D or 2D

isotropic covariance function, and g(u) is either

cos ðDkxu=kwÞ for the 1D integral or uJ0ðDKu=kwÞ for the

2D integral.

A functional analog of the Taylor series can be con-

structed if the functional argument is transformed to

aðuÞ þ �bðuÞ, with � a positive real number. Then an ordi-

nary Taylor series of F can be made in powers of �, leaving

the parameter � arbitrary for now (Dreizler and Gross,

1990),

FKðaþ �bÞ ¼
X1
m¼1

1

m!

dmFðaþ �bÞ
d�m

� �
�¼0

�m ; (27)

where it is implied that a ¼ aðuÞ and b ¼ bðuÞ are functions

in some function space. The expansion is around a reference

function a(u) in terms of some function b(u). It is instructive

to compare the functional Taylor series to an ordinary one.

In the Taylor series for functions, a(u) plays the role of the

point at which the derivatives are taken in an ordinary

Taylor series, and b(u) plays the role of the point at which

the series should be computed. The parameter � can be arbi-

trary, as it is the product �b that must be small for the series

to converge quickly.

Since the derivatives are with respect to a real number,

�, the definition of FK½aðuÞ� can be used in the definition of

the ordinary derivative to calculate these derivatives, result-

ing in

dmFðaþ �bÞ
d�m

¼
ð1

0

gðuÞ dm

d�m
eaþ�bdu; (28)

¼
ð1

0

gðuÞbmeae�bdu: (29)

Setting �¼ 0 and substituting this back into the functional

Taylor series,

FKðaþ �bÞ ¼
X1
m¼0

�m

m!

ð1
0

gðuÞbmeadu: (30)

To have an approximate representation of the KI, the func-

tions a(u) and b(u) and real number � must be specified. An

analytically tractable solution is possible if a(u) is chosen

as the zero function (a function that returns zero for any

input value u), bðuÞ ¼ gCnðu=kwÞ, and �¼ 1. Note that

these three choices make the functional FK½gCðu=kwÞ�,
which is the functional component of the KI of interest

here.

Making these substitutions into the 2D KI results in

I2D
K ðgÞ ¼ e�gh2

2

X1
m¼0

1

m!

ð1
0

uJ0ðDKu=kwÞ

� glCm
2 ðu=kwÞ

	 

du

�e�gh2
2

ð1
0

uJ0ðDKu=kwÞdu; (31)

¼ e�gh2
2

X1
m¼1

gm

m!

ð1
0

uJ0ðDKu=kwÞ

� Cm
2 ðu=kwÞdu; (32)

where Eq. (32) results from the fact that C0
2 ¼ 1, g0 ¼ 1,

and 0! ¼ 1 and cancels with the second additive term in Eq.

(31). In one dimension, the KI becomes, after similar

manipulations,

I1D
K ðgÞ¼ 2e�gh2

1

X1
m¼1

gm

m!
�
ð1

0

cosðDkxu=kwÞCm
1 ðu=kwÞdu:

(33)

To compute this series in practice, a partial sum with upper

limit M is used. Thus far, no specific covariance has been

assumed.

This series results in integrals that involve integer pow-

ers of the roughness covariance multiplied by a vertical

wavenumber parameter, g. Thus, to take advantage of the

functional Taylor series, integer powers of the roughness

covariance function must have analytic Fourier/Hankel

transforms. This property is not true for the most popular

seafloor roughness model—the von K�arm�an spectrum

(Jackson and Richardson, 2007). However, the exponential

covariance and Gaussian spectrum both have this property.

While these two specific roughness models do not cover the

wide range of spectral forms seen in natural roughness, they

are useful for model validation [where Gaussian (Broschat

and Thorsos, 1997; Thorsos, 1988; Thorsos and Jackson,

1989) or exponential (Olson and Jackson, 2020) models are

commonly assumed] or for when the seafloor has an approx-

imately exponential roughness covariance (i.e., a power-law

spectral exponent of 3 for 2D roughness).

A fruitful area of future work may be to use a numerical

integral in the wavenumber domain for the general von

K�arm�an spectrum, since the Fourier transform of the nth

power of a function in the spatial domain is an n-fold convo-

lution in the wavenumber domain. This aspect is not

explored here, although it shows promise, since the n-fold

convolution is non-oscillatory and may be computationally
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cheap to compute, compared to the KI directly. Another pos-

sibility is to approximate arbitrary covariance functions with

weighted sums of exponential or Gaussian functions, which

has been used elsewhere in the scattering literature (Hefner

and Jackson, 2014; Winebrenner and Ishimaru, 1985).

B. Specific forms of the roughness covariance

If the exponential form for the 2D roughness covariance

is substituted into Eq. (32), the following integral is

obtained:

I2D
K ðgÞ ¼ e�gh2

2

XM

m¼1

gm

m!
h2m

2

�
ð1

0

uJ0ðuDK=kwÞe�muK02=kw du: (34)

This integral can be performed analytically using Eqs.

(15), (21), and (23). A modified form of the covariance with

the effective spectral cutoff, K002 ¼ mK02, is used to com-

plete the integral, resulting in

I2D
K ðgÞ ¼ e�gh2

2

XM

m¼1

gmh2m
2

m!

k2
wK02m

ðK02mÞ2 þ DK2

h i3=2
: (35)

This series converges rapidly, owing to the factorial in the

denominator. Even if gh2
2 is large, the factorial term, m!,

grows faster than gmh2m
x . Additionally, contributions of the

second fraction are small when mK02 � DK. A similar pro-

cess is used to obtain an expression using the 1D exponen-

tial covariance,

I1D
K ðgÞ ¼ 2e�gh2

1

XM

m¼1

gmh2m
1

m!

kwK01m

ðK01mÞ2 þ DK2
x

: (36)

Following similar steps, the 2D KI under the Gaussian

covariance can be computed using Eqs. (15), (17), and (19),

I2D
K ðgÞ ¼ e�gh2

2

XM

m¼1

gmh2m
2

m!

k2
wL2

2

2m
e�DK2L2

2
=ð4mÞ: (37)

The 1D version for Gaussian covariance is

I1D
K ðgÞ ¼ 2e�gh2

1

X1
m¼1

gmh2m
1

m!

kwL1

ffiffiffi
p
p

2
ffiffiffiffi
m
p e�Dk2

x L2
1
=ð4mÞ: (38)

IV. CONVERGENCE TESTS AND RATE
OF CONVERGENCE

A. Asymptotic convergence

The series approximations developed in Sec. III can be

demonstrated to converge unconditionally. This property is

shown here using the ratio test. Let am be the mth term in

any of Eq. (35), (36), (37), or (38). If the ratio

r ¼ lim
m!1

amþ1

am
(39)

is strictly less than 1, then the series converges (Courant,

1987). Forming this ratio for the 2D exponential covariance,

we have

r ¼ lim
m!1

gh2
2 ðK02mÞ2 þ DK2

h i3=2

m ðK02ðmþ 1ÞÞ2 þ DK2

h i3=2
: (40)

If m is set to be much greater than K02=DK, then the ratio of

the bracketed terms tends to unity. Therefore, the limit can

be easily calculated as

r ¼ lim
m!1

gh2
2

m
¼ 0: (41)

The series approximation for the 2D KI with exponential

converges independently of any of the roughness or geome-

try parameters. Very similar steps can be used to prove that

the 1D version converges unconditionally as well.

Turning to the 2D Gaussian case, the ratio is

r ¼ lim
m!1

gh2
2m

ðmþ 1Þ2
exp

DK2L2
2

4

�1

mþ 1
þ 1

m

� �" #
: (42)

The term ð�1=ðmþ 1Þ þ 1=mÞ tends to zero as m tends to

infinity, so the ratio can be written as

r ¼ lim
m!1

gh2
2m

ðmþ 1Þ2
¼ 0; (43)

which also converges unconditionally. Very similar steps

can be used to prove the same result for the 1D Gaussian

case.

The ratio r is the convergence rate of the series.

Computing the error by keeping M terms requires an esti-

mate of the remainder terms, which can be difficult. A sim-

pler way to truncate the series is to use r to specify a

minimum change by keeping one additional term in the

series. Then, once r is set (e.g., to 0.01 or whatever the user

requires), a value of M can be solved for.

B. Numerical examples of convergence

It was demonstrated in Sec. IV A that these series con-

verge unconditionally. However, the rate of convergence is

also important, which governs how many terms should be

kept to achieve a specified error. If hundreds or thousands of

terms are required, then the series may not be faster to com-

pute than a direct numerical integral. Additionally, the fac-

torial suffers from numerical overflow at m¼ 171 for double

precision floating point numbers, so it is not practical to

compute partial sums with very large M (at least for a

straightforward implementation of this series).
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Two examples of the numerical accuracy of the series

methods are given, one for the exponential covariance and

another for the Gaussian covariance. Both examples are 1D,

although similar convergence rates were observed for the

2D case. Both covariance forms have two parameters, h1

and K0 for the exponential model and h1 and L1 for the

Gaussian model. Non-dimensional values for both of these

parameters are set using the acoustic wavenumber in water,

kw. The specific values for kwh1 are ½0:1; 1; 2; 5�. The spe-

cific values for the length (or inverse length) scales, K0; kw,

are ½0:05; 0:10; 1:00�. For the Gaussian covariance, we use

the same values for length scale as the exponential covari-

ance, kwL1 ¼ kw=K0. The series method is computed using a

maximum value for m, M¼ 120.

The benchmark used here for the KI is the trapezoidal

rule, using an upper limit of umax ¼ 50kw=K01 ¼ 50kwL1.

Therefore, 50 correlation lengths/outer scales are captured.

The u axis has a sampling interval du of 10�4, which is

about 1500 points per wavelength. For the smallest values

of K01, these parameters result in 107 points for the trapezoi-

dal integral rule. For the plots of the partial series (Figs. 4

and 5), hi ¼ 50�, and hs ¼ ½20�; 50�; 130�; 170��. The fre-

quency was set to 2 kHz, but any value of frequency could

be used, as the roughness parameters are set in a non-

dimensional fashion. One notable difference between the 1D

and 2D case was that the cosine term has constant magni-

tude as a function of u, whereas the uJ0ðuÞ term in the 2D

integral grows as u tends to infinity. Smaller umax was

required for the 1D case than the 2D case.

The exponential case is presented first. A plot of the rel-

ative error of the series approximation is presented in Fig. 4.

Each panel contains a different combination of kwh1 and

K01=kw, with increasing kwh1 going from top to bottom and

increasing K02 going from left to right. The parameter M is

varied between 1 and 120 and is the abscissa of these plots.

The relative error between the current M and the numerical

solution is plotted on the ordinate. Four scattered grazing

angles are shown here and are plotted as different lines

denoted in the legend. Here, 50� is the backscattering direc-

tion, 130� is the specular direction, and the other two angles

represent low back and forward scattering.

The dependence of the scattered grazing angle shows the

dependence on DKx and g ¼ Dk2
z . Convergence is fast for the

smallest kwh1 ¼ 0:01. Very high accuracy is achieved by

only four terms. Since the error is very small for M¼ 1, the

perturbation approximation to the Kirchhoff integral is also

accurate, which should be true for very small values of kw h1.

After seven terms, the series converges to within double pre-

cision. As kwh1 is increased, the convergence rate is slower,

and more terms are required to achieve acceptable accuracy.

Using M¼ 120, relative accuracy better than 10�5 is achieved

for all roughness parameters and angles studied here.

The convergence rate for 1D Gaussian covariance is

shown in Fig. 5. In this figure, the error was computed using

FIG. 4. (Color online) Illustration of the convergence rate for the series approximation to the KI for 1D exponential covariance, for several values of hs, as a

function of kwh1 and K0=kw. Each roughness parameter is plotted in its own panel. The horizontal axes denote M, and the vertical axes are relative error.

Note that the ordinate is different for each set of kh values.
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the series solution with M¼ 170 as the reference integral,

instead of the trapezoidal rule, due to the problems with

numerical roundoff. The trapezoidal rule in some cases suf-

fered from numerical roundoff error, since the absolute

value of the KI was far below double precision limit. This

case occurred for very small rms height and angles far away

from the specular direction. The behavior of the series

approximation is similar to the exponential covariance case,

although the case of small kwh1 and large kwL1 in the upper

left corner converges much more slowly for backscattering

angles. This slow convergence is due to the exponential

term in Eq. (38), which grows monotonically with increas-

ing m. It has an upper limit of unity but may grow quickly

for small m if L1 is large. The role of the effective power

spectrum is much more pronounced here. Note that this fig-

ure has different limits on the ordinate.

V. CONCLUSION

For two simple roughness covariance models, a func-

tional Taylor series approximation to the KI is possible in

both one and two dimensions. This series converges quickly

when the rms height is small compared to the wavelength

and slowly when it is big, but it converges asymptotically

for all roughness parameters. For practical purposes, the

series converges to a high degree of accuracy using 120 or

fewer terms in the partial sum. This approximation is much

faster than direct numerical integration of the KI, which is

both oscillatory and slowly converging. It is limited to clas-

ses of roughness covariance functions, C(x), where CnðxÞ
has an analytical Fourier transform and n is an integer

(mutatis mutandis for the 2D case), which limits the applica-

bility of this technique. Future work on this problem for

other roughness covariance types would broaden the appli-

cability of this technique.
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