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ABSTRACT:
Acoustic scattering from layered seafloors exhibits dependence on both the mean geoacoustic layering, as well as the

roughness properties of each layer. Several theoretical treatments of this environment exist, including the small

roughness perturbation approximation, the Kirchhoff approximation, and three different versions of the small slope

approximation. All of these models give different results for the scattering cross section and coherent reflection

coefficient, and there is currently no way to distinguish which model is the most correct. In this work, an integral

equation for scattering from a layered seafloor with rough interfaces is presented, and compared with small

roughness perturbation method, and two of the small slope approximations. It is found that the most recent small

slope approximation by Jackson and Olson [J. Acoust. Soc. Am. 147(1), 56–73 (2020)] is the most accurate when

the root-mean-square (rms) roughness is large, and some models are in close agreement with each other when the

rms roughness is small. VC 2020 Acoustical Society of America. https://doi.org/10.1121/10.0002164

(Received 28 July 2020; revised 15 September 2020; accepted 21 September 2020; published online 15 October 2020)

[Editor: Jie Yang] Pages: 2086–2095

I. INTRODUCTION

The ocean floor contains variations in both its rough-

ness and layering structure. At low frequencies, sound can

interact with sub-bottom layers but the effects of roughness

may be relatively small (at least for modest roughness). At

high frequencies, the attenuation in the ocean bottom is

higher, and the interaction with sub-bottom layers is

reduced, but the effect of scattering may be more important.

At intermediate frequencies, acoustic waves interact with

both the sub-bottom layering and roughness. It is often of

practical interest to remotely sense properties of both sub-

bottom layers and the rough interfaces that separate them.

Several models have been previously developed to solve the

forward problem using a point source.1–5

Models used for these purposes are limited in their

applicability. The Kirchhoff approximation (KA) is

restricted to angles close to the specular direction, and the

small roughness perturbation method (SPM, or perturbation

theory) performs best away from specular. The small-slope

approximation was introduced by Voronovich,6 and

applies to the entire angular range for certain parameters of

the rough interface.7 Its original incarnation was for

Dirichlet boundary conditions, but it has been applied to

fluid, elastic,8,9 and poroelastic10 halfspaces.

Recently, the small-slope approximation has been

expanded to encompass layered media, but there are three

competing models. One small-slope approximation for lay-

ered media was developed by Jackson,11 but is not explored

here due to its strange behavior for slow sediment layers.

Another small-slope approximation was developed by

Gragg and Wurmser12 in the acoustics literature, and later

by Berrouk et al.13 in the electromagnetics literature. It is

denoted SSL2 in this work. The last and most complicated

small slope approximation was developed by Jackson and

Olson,14 and is denoted SSL3. The SSLn convention comes

from Jackson and Olson14 and is retained here. As shown by

Jackson and Olson,14 all of these models disagree for certain

roughness and layer geoacoustic properties. This ambiguity

is troubling. Although SSL3 has the most physically rele-

vant motivation, it is not clear which approximation should

be used in a given situation.

In this work, we remedy this ambiguity by providing a

comparison between SSL2, SSL3, SPM, and the exact solu-

tion using integral equations. Two geoacoustic environ-

ments with two sets of roughness parameters each are used.

The integral equation method is based on Monte-Carlo aver-

aging, so individual realizations must be produced. A recent

application of the Kirchhoff approximation3 treats the sea-

floor layering more faithfully than previous work but is spe-

cialized to the point-source, point-receiver geometry, not

plane waves. Since formally-averaged quantities such as the

scattering cross section are not available, we make no com-

parisons to this model in this work. A comparison to these

models is certainly a fruitful area for future work. We find

that SSL3 provides the best match with exact results for the

scattering strength and coherent reflection coefficient. We

do not present a systematic study of the region of validity

for these models, although that is also a productive area for

future work.

a)Electronic mail: dolson@nps.edu, ORCID: 0000-0002-7928-0468.
b)ORCID: 0000-0001-8060-2439.
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In Sec. II we present the geometry and environment.

The basic concepts for the models used here are presented in

Sec. III. The integral equation method is detailed in Sec. IV.

Comparisons are made to theory in Sec. V. Discussion and

conclusions are presented in Sec. VI.

II. GEOMETRY AND ENVIRONMENT

The geometry of the problem is shown in Fig. 1.

Although arbitrary fluid layering is treated in theoretical

work,14 we limit the problem here to an overlying water col-

umn (a half-space), a fluid layer, and an underlying fluid

half-space (which we refer to as the basement). These

domains are denoted as X0; X1, and X2, respectively. Each

domain, Xn is bounded by one of two boundaries. C1 bounds

X0 from X1 and is the water-sediment interface. C2 bounds

X1 from X2, and is the interface between the sediment layer

and the sediment basement. The boundary of a domain Xn is

denoted @Xn, with @X0 ¼ C1; @X1 ¼ C1 [ C2, and

@X2 ¼ C2. The normal vectors associated with each of these

boundaries are shown in Fig. 1. Note that both normal vec-

tors point into X1. This property is important for derivation

of the boundary integral equations.

Each domain, Xn, is characterized by a phase speed cn,

density qn, and dimensionless loss parameter, dn. The com-

plex sound speed in each domain can be written as

~cn ¼
cn

1þ idn
: (1)

The wavenumber in each domain is related to the complex

sound speed through kn ¼ x=~cn, where x is the acoustic

angular frequency with units of radians per second.

Dimensionless ratios are defined as ac1 ¼ c1=c0, and ac2

¼ c2=c0 for sound speed, and aq1 ¼ q1=q0 and aq2 ¼ q2=q0.

The incident acoustic wave vector is specified by

ki ¼ k0k̂i; (2)

where k̂i is the incident acoustic unit wave vector and is

given by

k̂i ¼ �cos hix̂ � sin hiẑ; (3)

where x̂ is the unit vector in the x (horizontal) direction, and

ẑ is the unit vector in the z (vertical) direction. The scattered

wave vector into X0, back into the water column, is simi-

larly given by

ks ¼ k0k̂s; (4)

where k̂s is the scattered acoustic unit wave vector and is

given by

k̂s ¼ cos hsx̂ þ sin hsẑ: (5)

The incident grazing angle hi, and scattered grazing angle

hs, are both measured from the horizontal axis.

The rough interfaces are described in terms of their

power spectra. Let Wn be the power spectrum of the rough

interface constituting Cn. The rough interface Cn is specified

by the function fnðxnÞ. The Fourier transform of fnðxÞ is

denoted FnðkxÞ with wavenumber argument kx. The power

spectrum is defined by Wnðkx1Þdðkx2 � kx1Þ ¼ hFnðkx1Þ
Fnðkx2Þ�i, where the angle brackets denote ensemble averag-

ing. The truncated power law roughness spectrum known as

the “von K�arm�an” spectrum is used here and is specified by

WnðKxÞ ¼
w1n

K2
0n þ k2

x

� �c1n=2
; (6)

where w1n is the one-dimensional (1D) spectral strength for

interface n with units of m3�c1n ; c1n is the dimensionless 1D

spectral exponent, and K0n is the spectral cutoff for interface

n with units of rad/m. The mean square height for interface

n is denoted h2
n, and is equal to the integral of Wn over the

real line. For the von K�arm�an spectrum,

h2
1n ¼

w1n
ffiffiffi
p
p

C ðc1n � 1Þ=2ð Þ
K

c1n�1
0n C c1n=2ð Þ

: (7)

Values of c1n greater than unity result in a finite h2
1n. The 1D

correlation function for the nth interface, CnðxÞ, is defined as

CnðxÞ ¼ h�2
1n hfnðx0Þfnðxþ x0Þi: (8)

For the von Karman spectrum, the correlation function is

CnðxÞ ¼
21��n

Cð�nÞ
K0nxð Þ�n K�n

ðK0nxÞ; (9)

where �n ¼ ðc1n � 1Þ=2. K�ðxÞ is the modified Bessel func-

tion of the second kind with argument x and order �. We

assume the rough interfaces do not intersect.

III. MODELS FOR SCATTERING FROM 1D
ROUGHNESS

The three scattering models compared in this work are

the SPM, SSL2, and SSL3. Since a complete description of

these models is quite lengthy, only the elements will be pro-

vided here. The reader is referred to Jackson and Olson14

FIG. 1. (Color online) Layered environment and geometry. Although only

the upper interface is depicted as rough, the integral equations defined here

can be used with two rough boundaries. Cn denotes each interface, and Xn

denotes the medium immediately above Cn. The arrows show the direction

of integration used in the integral equations developed in Sec. IV.
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where these models are presented in complete form. We

focus on two quantities, the coherent reflection coefficient,

and the scattering cross section, both of which are defined in

terms of the T-matrix, Tðksx; kixÞ. The T-matrix is a transfer

function between an incident plane wave with horizontal

wave vector kix, and a scattered plane wave with horizontal

wave vector ksx. The scattering cross-section due to 1D

roughness, rðksx; kixÞ, is defined as15

rðksx; kixÞ ¼
k2

sz

k0

Cðksx; kixÞ; (10)

Cðksx; kixÞd kix � k0ix
� �

¼ hTðksx; kixÞT�ðksx; k
0
ixÞi

�hTðksx; kixÞihT�ðksx; k
0
ixÞi;

(11)

where Cðksx; kixÞ is the incoherent second-moment of the T-

matrix. The coherent reflection coefficient, jRðkixÞj is

defined as

jRðkixÞjd ksx � kixð Þ ¼ jhTðksx; kixÞij; (12)

where the delta function must be included on the left hand

side since it is always present in the average T-matrix for

stationary roughness. The quantity jRj is actually the magni-

tude of the complex coherent reflection coefficient, R.

However, for brevity, we refer to jRj as the coherent reflec-

tion coefficient. The above definitions assume stationary

roughness, and we will further assume Gaussian statistics

for this random process. The coherent reflection coefficient

is frequently used with an angular argument, jRðhiÞj, instead

of the horizontal component of the wave vector.

For the scattering cross section, all models here use the

factor Anðksx; kixÞ for the nth interface, which is defined as14

Anðksx; kixÞ ¼
1

a2
cðn�1Þaqðn�1Þ

� An�1ðksxÞAn�1ðkixÞ ~Anðksx; kixÞ ; (13)

where An�1ðkxÞ is the amplitude of the downgoing plane

wave coefficient in medium n – 1 (just above interface n)

due to a plane wave incident from medium X0, and

~Anðksx; kixÞ ¼
1

2
an 1þ VnðkixÞ½ � 1þ VnðksxÞ½ �
�
�bn 1� VnðkixÞ½ � 1� VnðksxÞ½ �g ; (14)

where

an ¼ 1�
aqðn�1Þ

aqn

� �
ksxkix

k2
n�1

� 1þ
a2

cðn�1Þaqðn�1Þ

a2
cnaqn

; (15)

bn ¼
aqn

aqðn�1Þ
� 1

� �
bn�1ðkixÞbn�1ðksxÞ: (16)

VnðkixÞ is the flat-interface reflection coefficient of interface

Cn assuming an overlying infinite halfspace in medium

Xn�1. The sine of the angle in Xn is bnðkxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2

x=k2
n

p
.

For the upper interface, V1ðkxÞ is

V1ðkxÞ ¼
VH

1 ðkxÞ þ VH
2 ðkxÞe2ik1b1ðkxÞD

1þ VH
1 ðkxÞVH

2 ðkxÞe2ik1b1ðkxÞD
; (17)

where D is the mean thickness of X1, and VH
n ðkxÞ is the

reflection coefficient of the nth layer assuming both sides

consist of halfspaces defined as

VH
n ðkxÞ ¼

Zn � 1

Zn þ 1
; (18)

Zn ¼
aqnacnbn�1ðkxÞ

aqðn�1Þacðn�1ÞbnðkxÞ
: (19)

For perturbation theory, the two-dimensional (2D) T-

matrix for interface n is

TSPM
n ðksx; kixÞ ¼

ik0

b0ðksxÞ
Anðksx; kixÞFnðksx � kixÞ: (20)

For SSL2, the 2D T-matrix for the layered, rough seafloor is

TSSL2ðksx; kixÞ¼�
k0

2pb0ðksxÞDkz

�
XN

n¼1

Anðksx; kixÞ
ð

e�iðksx�kixÞx�iDkzfnðxÞdx ;

(21)

where Dkz ¼ ksz � kiz is the difference between the vertical

component of the scattered and incident wavenumbers.

SSL3 requires a version of Anðksx; kixÞ where interface n
has been displaced by an amount fn, which is denoted

Anðksx; kix; fnÞ. This expression is rather complicated, and the

full version is presented in Eqs. (37) and (82) of Jackson

and Olson.14 The SSL3 T-matrix for interface n in 2D geom-

etry is

TSSL3
n ðksx; kixÞ ¼

ik0

2pb0ðksxÞ

ð
e�iðksx�kixÞx

�
ðfnðxÞ

0

Anðksx; kix; f Þ df dx : (22)

The main difference between SSL2 and SSL3 is that in

SSL3, the factor Anðksx; ksi; fnÞ depends on the height of

layer n, and the integral over space includes variations in

the sediment layering due to roughness fnðxÞ, whereas nei-

ther are true for SSL2. Because of this dependence on fn,

SSL3 takes into account changes due to roughness in the

interference pattern produced by the layered seafloor,

whereas SSL2 assumes that the interference pattern is

unchanged by roughness. In this way, SSL2 may be

thought of as a hybrid between SPM and a true small-slope

approximation.

For the scattering cross section and coherent reflection

coefficient, we refer the reader to Jackson and Olson.14
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Scattering strength for SPM is easy to compute using the

formulas provided there. The coherent reflection coeffi-

cient for SSL2 is computed from Eq. (74), and scattering

strength from Eq. (79) of that reference. For SSL3, the

coherent reflection coefficient can be found in Eqs.

(83)–(87), and scattering strength in Eq. (90)–(96), and

(A1)–(A35). These formulae are omitted due to the large

amount of space required to express these approximations

and all of their definitions, and interpretations of the mod-

els will rely on expressions for the T-matrices presented

above.

The Jackson and Olson14 analysis focused on 2D rough-

ness, whereas we consider 1D rough interfaces in this work.

These differences are minor for SPM, and formally averag-

ing the SPM result is simple. The 1D version of SSL2 can

be found by simply replacing the Kirchhoff integral, Eq.

(63) in Jackson and Olson,14 with

I1D
n ðgÞ ¼ 2e�g2h2

n

ð1
0

cos
DKxu

k0

� �
eg2h2

nCnðu=k0Þ � 1

h i
du;

(23)

where DKx ¼ ksx � kix is the difference between the hori-

zontal component of the the outgoing and incoming wave

vectors. Similarly, the small slope integral, Eq. (89) in

Jackson and Olson,14 should be replaced by

I1D
sslnðga; gbÞ ¼ e�ð1=2Þðga�gbÞ2h2

n I1D
n ðgagbÞ (24)

to compute SSL3.

IV. INTEGRAL EQUATIONS

Integral equations (IE) provide a method to produce the

exact scattered pressure due to rough surfaces. Methods for

pressure release16 and fluid-fluid17 boundary conditions

have been previously presented in the underwater acoustics

literature. A numerical method for layered media was pre-

sented by Tang and Hefner,18 but its derivation was not

based on an integral equation for that environment. Rather,

in that reference, a discretized matrix equation is derived

from the integral equation for a single interface, and a dis-

cretized matrix equation is given for the layered case via

physical intuition. The method presented here is based on

matching boundary conditions for three different integral

equations. This method can be shown to be equivalent to

the method of Tang and Hefner after correcting a few errors

on the diagonal terms and rearranging the density ratio

factors.

The pressure, pn, in any domain n must follow the

Helmholtz equation in each domain,

r2pn þ k2
npn ¼ 0; (25)

where r2 is the Laplacian operator. The Green’s function is

the solution to the Helmholtz equation with a point source

on the right-hand side. In two dimensions, the free space

solution (i.e., without boundaries) in domain n using a point

source is

r2Gnðr; r0Þ þ k2
nGnðr; r0Þ ¼ dðx� x0Þdðz� z0Þ; (26)

Gnðr; r0Þ ¼
�i

4
H
ð1Þ
0 ðknjr� r0jÞ; (27)

where i ¼
ffiffiffiffiffiffiffi
�1
p

is the imaginary unit, dðxÞ is the Dirac delta

function, and H
ð1Þ
0 ðxÞ is the Hankel function of the first kind

of order zero, with argument x. The position vectors are

defined as r ¼ rxx̂ þ rzẑ and r0 ¼ rx0x̂ þ rz0ẑ. We denote

the position vector restricted to Cn as rn, and the normal

vector as n̂n.

Within each domain, the pressure field satisfying a

Helmholtz equation can be solved using the Helmholtz inte-

gral formula, also known as the Helmholtz-Kirchhoff inte-

gral equation (HKIE).19 The pressure on the boundary can

be expressed, in the absence of an incident pressure field,

and with an outward-pointing normal vector (corresponding

to the “exterior” boundary value problem), as

aðrlÞpnðrlÞ ¼ Vn
l;m

@pnðrmÞ
@nm

�Kn
l;mpnðrmÞ; (28)

where the integral operators are defined as

Vn
l;m /ðrlÞ½ � ¼

ð
Cm

Gnðrl; rmÞ/ðrmÞ dSm; (29)

Kn
l;m /ðrlÞ½ � ¼

ð
Cm

@Gnðrl; rmÞ
@nm

/ðrmÞ dSm: (30)

The function /ðrÞ is arbitrary and square-integrable, dSm

indicates that the integration is carried out over the bound-

ary with respect to the subscript variable, and @=@nm

¼ n̂m � rm is the normal derivative with respect to the m
argument (as opposed to l). The subscript of l, m on the

integral operators indicates that integration is carried out

along Cm, and the operator output is a function defined on

Cl. The parameter a is equal to b=ð2pÞ, where b is the angle

subtended by the tangent lines on each side of a given point.

For a smooth surface, a ¼ 1=2 at all points. In this work,

we form the integral equation along a piecewise continuous,

non-smooth surface, and must calculate a at each point. The

operator V is commonly referred to as the single-layer

potential operator, and K as the double-layer potential

operator. In this work, the exterior form of the Helmholtz

integral equation is used with domains having a single

boundary—only X0 and X2.

We may also form the equivalent integral equation for a

domain with inward-pointing normal vector (the “interior”

boundary value problem). In this case, the interior integral

equation is defined for X1 only, which is bounded by C1 and

C2. Here, we write the integral operators on each boundary

separately, giving
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1� aðr1Þð Þp1ðr1Þ ¼ �V1
1;1

@p1ðr1Þ
@n1

þK1
1;1p1ðr1Þ

�V1
1;2

@p1ðr2Þ
@n2

þK1
1;2p2ðr2Þ ;

(31)

1� aðr2Þð Þp1ðr2Þ ¼ �V1
2;2

@p1ðr2Þ
@n2

þK1
2;2p1ðr2Þ

�V1
2;1

@p1ðr2Þ
@n2

þK1
2;1pðr1Þ :

(32)

Although written separately, these equations should be

thought of as being a single integral equation since the first

specifies the pressure on the upper boundary, and the second

specifies the pressure on the lower boundary. Both are

required for a solution of the boundary value problem.

To form an integral equation for the union of all domains,

continuity conditions for pressure and normal velocity are

enforced between all domains, keeping track of the normal

vector direction. The incident pressure from domain X0 is

added to the right hand side of the integral equation for that

domain, and terms are rearranged to give the integral equations

in terms of the following matrix of operators

aðr1ÞIþK0
1;1 �V0

1;1

1� aðr1Þð ÞI�K1
1;1 aq1V1

1;1 �K1
1;2 aq1V1

1;2

�K1
2;1 aq1V1

2;1 1� aðr2Þð ÞI�K1
2;2 aq1V1

2;2

aðr2ÞIþK2
2;2 �aq2V2

2;2

2
66666664

3
77777775

p0ðr1Þ
@p0ðr1Þ
@n1

p1ðr2Þ

a�1
q1

@p1ðr2Þ
@n2

2
6666666664

3
7777777775
¼

piðr1Þ
2
6666666664

3
7777777775
; (33)

where a blank spot in a matrix denotes either a zero operator

or a variable that is identically zero, and I denotes the iden-

tity operator (which maps a function onto itself). The right

hand side of this system of integral equations is the incident

pressure on C1 from X0 in the first row, and is zero for all

other rows. The unknown variables consist of the pressure

in X0 and X1, as well as their normal derivatives. Note that

the normal derivative for X1 has the factor a�1
q1 , which is due

to the boundary conditions for the continuity of the normal

velocity across C2.

In this equation, the direction of integration determines

the direction of the unit normal vector. The convention fol-

lowed here is that the normal vector points to the right of the

integration direction along each boundary, Cn. In Fig. 1, the

direction of integration along each boundary and in each

domain has been specified. In X1, which has both bound-

aries, the integration can be thought of as being in the clock-

wise direction, to the right on the top, and to the left on the

bottom. Formally, the integral should be closed in X1

between C1 and C2, but this part of the integral may be

neglected if the pressure field decays to zero, which we

assume here.

Extensions of this method to multiple layers can be

made by formulating the HKIE in each domain and match-

ing boundary conditions. A systematic method to perform

this type of calculation was presented by von Petersdorff

and Leis,20 although their analysis uses the operators in Eqs.

(29) and (30) and their normal derivatives (the adjoint dou-

ble layer, and hypersingular potential operators, respec-

tively—both of which are not used here). Although the

method of von Petersdorff and Leis has superior stability

and numerical conditioning than the method used here, it is

more complicated due to the hypersingular operator, which

is difficult to implement numerically. The numerical condi-

tion number for the method detailed in this work has been

found to be adequate for our purposes (on the order of 106

or 107).

The incident field used here is an approximation to a

plane wave developed by Thorsos.16 This field is incident

from X0 onto interface C1 and takes the form (for our time

convention)

piðr1; f Þ ¼ pie
iki�r1 1þwðr1Þð Þ� x1�z1cothið Þ2=g2

; (34)

wðr1Þ ¼
2 x1 � z1cothið Þ2=g2 � 1

ðk0g sin hiÞ2
; (35)

where g is a parameter controlling the width of the incident

field, and pi is the complex pressure amplitude. The 3 dB

angular width of this beam is

Dh ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log ð2Þ

p
k0g sin hi

: (36)

As the product k0g grows large, the incident field better

approximates a plane wave, and it is valid at lower grazing

angles. The angular width increases as hi decreases, so small

grazing angles are more computationally demanding for the

numerical solution of scattering problems.16

These integral operators can be discretized using stan-

dard techniques, such as the boundary element method
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(BEM).16,21 In this work, these operators were discretized

using the collocation method with linear basis functions to

approximate the pressure and normal derivative, resulting in

a square matrix for each of the integral operators. The matri-

ces were assembled into a fully discrete block matrix

according to Eq. (33).

After the pressure and pressure normal derivative on

each boundary is found, it is propagated to the far-field

using the HKIE. If the pressure in X0 is sought, then this

becomes

p0ðrf Þ ¼ V0
f ;1

@p0ðr1Þ
@n1

�K0
f ;1p0ðr1Þ; (37)

where the subscript f denotes the field pressure point loca-

tions. The pressure in other domains can be found from the

integral equations for that domain. Once the field pressure is

found, the scattering cross section can be estimated by16

r ¼ r

L0
hjp0ðrf Þj2i
jpij2

; (38)

where r is the distance from the center of the top mean inter-

face to the field point, and

L0 ¼ g

ffiffiffi
p
2

r
1� 0:5ð1þ 2cot2hiÞ

ðkg sin hiÞ2

" #
(39)

is the effective ensonified length of the rough interface. The

angle brackets denote ensemble averaging.

The coherent reflection coefficient is a bit more difficult

to estimate. Instead of an analytic formulation, we follow

the method used by Thorsos.22 We compare the scattered

pressure due to the rough layered environment to the scat-

tered pressure in X0 due to a flat, rigid boundary of the same

length, p0f lat. Namely,

jRj ¼
���� hp0ðrf Þi
p0f latðrf Þ

����: (40)

These calculations use the same tapered incident field.

V. RESULTS

We present results for two different geoacoustic envi-

ronments. The first environment has a layer with a greater

sound speed than that of water, where ac1 ¼ 1:05; aq1

¼ 1:8; ac2 ¼ 1:8; aq2 ¼ 2:5. The attenuation parameters are

d1 ¼ 0:01 and d2 ¼ 0:02. We call this environment the “fast

layer.” The second environment is a slow mud layer overly-

ing a fast basement with ac1 ¼ 0:99; aq1 ¼ 1:4; ac2 ¼ 1:8;
aq2 ¼ 2:5. The attenuation parameters here are set to d1

¼ 0:0005 and d2 ¼ 0:02 since softer sediments typically

have smaller attenuation coefficient values. This environ-

ment is called the “slow layer.” Geoacoustic parameters are

summarized in Table I. These geoacoustic properties corre-

spond to the second and third geoacoustic environments

presented in Jackson and Olson.14 The acoustic frequency

was set to 2 kHz, with x � 12:6� 103 rad/s.

In all results, interface 2 is smooth and interface 1 is

rough (except for the integral equation test case). Two sets

of roughness parameters for each environment are used. One

set has small k0h1, and the other has larger k0h1. These two

parameter sets are presented in Table II. Note that w11 and

c11 for the large roughness case are the 1D equivalent to the

parameters in the examples presented in Jackson and

Olson.14 Formulas found in Appendix D and the errata list

from Jackson and Richardson23 were used to perform this

conversion. In this table, the root-mean-square (rms) height

of each interface multiplied by k0 is shown, as is the rms

height divided by the average layer thickness, D, set to 1 m.

The integral equation results used 48 independent

roughness realizations. The incident field width parameter,

g, was set to 40k, which limited the range of grazing angles

over which the integral equation results are valid. At 25�

grazing, the incident field relative angular width is about

5%, and is 10% at 18� grazing. Therefore, conservatively,

results should be trusted above 25 degrees, but plots are

shown down to 18 degrees. The total surface length of the

realizations was set to L ¼ 5g, so that multiple reflections

between the interfaces could be captured accurately. This

value was chosen by gradually decreasing the value of L
until noticeable effects were seen (starting at L ¼ 16g). The

surface was sampled at Dx ¼ k=16, which is a rather small

sampling interval, but was chosen because coarser sampling

did not converge within 1 dB. The rough surfaces are gener-

ated using the spectral method of Thorsos16 with the speci-

fied sampling interval. However, the power spectrum was

low-pass filtered so that slopes at very small scales did not

cause numerical issues with the discretized integral equa-

tions. The power spectra at wavenumbers between 6k0 and

6:5k0 were smoothly tapered to zero using a raised cosine

function (inspired by LePage and Schmidt24), and were set

to zero between 6:5k0 and 8k0 (the Nyquist wavenumber).

This transition region corresponded to about 100 points of

TABLE I. Geoacoustic parameters used in numerical examples. All compu-

tations use water sound speed c0 ¼ 1500 m/s and density q0 ¼ 1000 kg/m3,

although only the ratios are important.

Case Domain

Thickness

(m)

Sound speed

ratio

Density

ratio

Loss

parameter

Fast 1 1 1.05 1.8 0.02

Layer 2 1 1.8 2.5 0.01

Slow 1 1 0.99 1.4 0.005

Layer 2 1 1.8 2.5 0.01

TABLE II. Roughness spectrum parameters used in numerical examples.

Case w11 (m3�c11 ) c11 K01 (rad/m) k0h1 h1=D

Large k0h1 2 �10�3 2 1 0.66 0.079

Small k0h1 2 �10�4 2 1 0.21 0.025
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the sampled wavenunber domain, with a total of 3480

points.

With these parameters, SPM was the fastest model to

compute, as it required only evaluating functions at the

angular and wavenumber arguments. SSL2 was the next

fastest, but required evaluating the Kirchhoff integral for

each incident and scattered angle. The integration was per-

formed using the trapezoidal rule, and the time required was

0.5 s for each scattering strength figure presented below.

SSL3 required computing the Kirchhoff integral many times

for each incident and scattered direction, and required 28

min for each scattering strength figure presented below. The

integral equation calculations for these parameters took

about 12 h for all 48 realizations. Times listed here were for

an equivalent single-core processor, but we used a quad-

core processor at 4.2 GHz and parallel for-loops to speed up

the calculations.

A. Integral equation validation

The first result is a validation of the integral equation.

The fast layer geoacoustic properties are used with both inter-

faces flat. The numerically calculated reflection coefficient is

compared to the theoretical plane wave reflection coefficient,

Eq. (17). These two curves are compared in Fig. 2. The lower

limit of the grazing angles is set to 18 degrees since the angu-

lar width of the incident field and finite length of the surfaces

that enter into the integral equations can cause discrepancies

at low grazing angles. The model-IE comparison is quite

good, although the IE result is slightly less than the model at

small grazing angles by about 1%.

B. Fast layer

A comparison for the coherent reflection coefficient

between the theoretical models and integral equations for

the fast layer with small roughness is presented in Fig. 3.

The small rms roughness causes the integral equation

coherent reflection coefficient to depart only slightly from

the flat-interface cases. SSL3 agrees with the integral equa-

tion result in this case, but SSL2 shows noticeable depar-

tures from all other models and integral equations. This

figure serves to show that for small values of the rms rough-

ness, defined here as k0h1 � 0:2, SSL3 is accurate for the

coherent reflection coefficient, but SSL2 is less accurate,

although not by much.

Results for the coherent reflection coefficient for large

roughness are presented in Fig. 4. The integral equation

departs significantly from the flat interface case, especially

near 80 degrees grazing angle, and near the peaks. SSL3 is

the best model presented here, although it has some small

errors near the peaks. SSL2 follows the integral equation

less closely. A notable difference is that SSL2 has a differ-

ent local minimum near 45 degrees grazing angle than both

the integral equation, flat interface, and SSL3. We may

FIG. 2. (Color online) Flat-interface integral equation result compared with

the plane wave reflection coefficient model.

FIG. 3. (Color online) Coherent reflection coefficient for fast layer, small

roughness case.

FIG. 4. (Color online) Coherent reflection coefficient for fast layer, large-

roughness case.
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conclude that when the roughness is increased, SSL3 is a

more physically realistic model, since it matches the integral

equation results. Physically, this improved accuracy is due

to the fact that SSL3 accounts for changes to the interfer-

ence pattern when roughness is present in a layered seafloor.

Scattering strength results from the fast layer case with

small rms roughness presented in Fig. 5. The integral equa-

tion result is shown, along with SPM, and both SSL2 and

SSL3. For these values of the geoacoustic and roughness

parameters, all three models agree quite well with each

other, and the models appear to fall within the uncertainty of

the Monte-Carlo simulations. For these values of the rough-

ness and geoacoustic parameters, we conclude that all mod-

els examined perform adequately for the scattering cross

section. This figure gives confidence that SSL2 and SSL3

agree for small rms roughness, which they should in the

limit as k0h1 ! 0. The agreement of all the models with the

integral equation results gives confidence that the imple-

mentations of both the theoretical models and integral equa-

tions are sound. It is interesting to note that for these

roughness and geoacoustic parameters, SSL2 and SSL3

agree for scattering strength, but not for the coherent reflec-

tion coefficient.

When the roughness is increased in Fig. 6, all the mod-

els depart from one another, but only slightly. Perturbation

theory becomes inaccurate near the specular direction,

which is expected, but also contains some small errors at

moderate angles. SSL2 performs better than perturbation

theory near the specular direction, but still contains moder-

ate errors compared to the integral equation at moderate

angles. SSL3 performs better than SSL2, notably near 55

degrees grazing. Another notable difference between SSL2

and SSL3 are the changes in shape near 43 degrees grazing.

Close examination of this region shows that SSL3 has a

much different shape than both SSL2 and SPM. It appears

that SSL3 is predicting an alteration of the interference pat-

tern compared to SPM. The uncertainty of the integral equa-

tion results is too large to make a determination about which

model is correct, but it appears that SSL3 follows the IE

curve more closely between about 45 and 50 degrees

grazing.

C. Slow layer

The coherent reflection coefficient for the slow layer

geoacoustic environment with small roughness properties is

shown in Fig. 7. It is compared with SPM, SSL2, and SSL3.

The oscillations in the coefficient are small compared to that

of the fast layer. For this case, the integral equation, flat

interface, and SSL3 agree quite well with each other. SSL2

contains small discrepancies compared to the integral equa-

tion, although less than the fast layer case with small rough-

ness. All the models presented here perform an adequate job

FIG. 5. (Color online) Scattering strength results for the fast layer, small

roughness case.

FIG. 6. (Color online) Backscattering strength comparison for fast layer,

large roughness case.

FIG. 7. (Color online) Coherent reflection coefficient for slow layer, small

roughness case.

J. Acoust. Soc. Am. 148 (4), October 2020 Derek R. Olson and Darrell Jackson 2093

https://doi.org/10.1121/10.0002164

https://doi.org/10.1121/10.0002164


for this small roughness case—even the assumption of a flat

interface.

The coherent reflection coefficient for the slow layer

with large roughness is plotted in Fig. 8. SSL3 is the best

model here with an error of less than 1%. SSL2 departs sig-

nificantly from the integral equation result, especially near

60–70 degrees grazing and around 35 degrees grazing. SSL2

and the flat-interface model all have errors of less than 10%.

Based on these small errors, we conclude that the roughness

present for this case has a small effect on the reflection coef-

ficient for a slow layer, but is best modeled by SSL3.

However, this conclusion cannot be extended to the scat-

tered field in general, as will be seen in the next example.

Scattering strength from the slow layer with small

roughness is presented in Fig. 9, and the IE results are com-

pared to the same models. The shape of the IE curve is

much different from the fast layer case, and there are some

deep nulls at several angles. SSL3 follows the IE curve the

best. SSL2 and SPM agree with the integral equation result

over most of the angular range, except for the three local

minima present, near 35, 40, and 60 degrees grazing. Here,

SPM and SSL2 underestimate the scattering cross section.

SSL3 provides the correct fit near these grazing angles. If

the attenuation of X1 increased slightly, then SSL2 and SPM

would match the IE result nearly as well as SSL3.

Scattering strength results from the slow layer case with

larger rms roughness are presented in Fig. 10. The integral

equation result is shown along with SPM and both SSL2 and

SSL3. For these values of the geoacoustic and roughness

parameters, SSL2 and SPM agree over all but the largest

grazing angles. SSL3 disagrees with both SSL2 and SPM

close to specular, and near the local minima away from the

specular direction. The integral equation result agrees quite

well with SSL3, but not SSL2 or SPM. The large differences

between SSL2 and SSL3 are surprising given the similar

results presented for the coherent reflection coefficient in

Fig. 8. However, we note that the scattering cross section

depends on the factors ½16V1ðhiÞ� and ½16V1ðhsÞ�, as seen

in Eq. (13). Since the magnitude of V1ðhÞ is close to unity

for the slow layer, small changes in V1ðhÞ can lead to large

relative changes in ½16V1ðhÞ�, depending on the sign of

V1ðhÞ. We can conclude from this example that, for a slow

layer, increasing the roughness causes large discrepancies

between SSL2 and SSL3, and also SSL3 is the most accu-

rate model for these parameters to within about 0.3 dB.

VI. DISCUSSION AND CONCLUSION

In Sec. V, we have seen that for the larger values of

spectral strength, SSL3 departs from SSL2, which was

shown previously in Jackson and Olson.14 We have also

seen that the Monte-Carlo integral equation method agrees

very well with SSL3 in the large-roughness cases, and

agrees with all the models in the small roughness case. In

FIG. 8. (Color online) Coherent reflection coefficient for slow layer, large

roughness case.

FIG. 9. (Color online) Backscattering strength comparison for slow layer,

small roughness case.

FIG. 10. (Color online) Backscattering strength comparison for slow layer,

large roughness case.
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Jackson and Olson,14 it was postulated that the disagreement

between SSL2 and SSL3 was due to the fact that SSL3

accounts for changes to the interference pattern due to

changes in layer thickness caused by the rough interfaces.

The agreement between SSL3 and the integral equation sup-

ports the conclusion that this effect is indeed present in scat-

tering from layered surfaces. It remains to be seen whether

these differences can be seen in field experiments.

To investigate what is causing these large differences,

another numerical experiment was performed with the same

sound-speed and density as the fast layer, but with the atten-

uation of the slow layer and the large roughness parameters.

These results are not shown, but the decreased attenuation

of the fast layer showed deep nulls in SSL2 and SPM that

were not apparent in SSL3 or the IE results. When large

roughness is present, its effect is more pronounced if the

attenuation is small for both a fast and a slow layer. We can

conclude that the presence of roughness changes the inter-

ference pattern caused by the layering structure, and this

effect is more pronounced with small values of the attenua-

tion coefficient in X1.

The confirmation of the differences between SSL3 and

SPM has implications for geoacoustic inversion of layered

rough seafloors. The alteration of the interference pattern

due to roughness could cause inversion schemes that use the

reflection coefficient25,26 or scattering strength27 to provide

incorrect results if an inappropriate model is used, such as

the flat-interface assumption for the reflection coefficient, or

the SPM for the scattering cross section. SSL3 provides a

promising model to use in such cases.

This work was focused on deciding between competing

models for layered rough interfaces for a few sets of

geoacoustic and roughness parameters. A systematic study

of the validity of each of these scattering models was not

performed but would be a valuable avenue for future work.

The integral equation methods presented here could be used

for such a study.
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