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Fast computation of time-domain scattering by an
inhomogeneous stratified seafloor

Derek R. Olson1,a) and Charles W. Holland2
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ABSTRACT:
Marine sediment properties exhibit fluctuations on a very wide range of scales in all three spatial dimensions. These

fluctuations lead to scattering of acoustic waves. Seabed scattering models that treat such fluctuations are reasonably well

developed under the plane-wave assumption. A recent model, called TDSS (time domain model for seafloor scattering),

accurately treats the important point-source-point-receiver geometry for generally stratified fluid sediments—important

because this is the geometry employed in many seabed scattering measurements. The computational cost associated with

this model is very high and scales roughly with the product of mean source-receiver height above the basement to the

fifth power and both bandwidth and wavenumber to the second power. Thus, modeling deep ocean scattering from a

near sea surface source and receiver is prohibitive at frequencies above a few tens of hertz. A computational approach

was developed based on Levin’s method of oscillatory integration, which is orders of magnitude faster than standard

numerical integration techniques and makes deep ocean seabed scattering computations practical up to many kilohertz.

This approach was demonstrated to agree with the narrowband sonar equation in several simple environments in the limit

of small bandwidths, but the TDSS model is expected to be valid for a much wider range of environments.
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I. INTRODUCTION

Inhomogeneities in the seafloor, including sediment

layering and fluctuations, cause the scattering of sound.

Scattering can be due to either the water–sediment rough

interface, or from fluctuations in seafloor properties and

buried sediment layers. Scattering from the latter category

of inhomogeneities is known as sub-bottom scattering. In

remote sensing applications, the goal is to infer the structure

of the sediment from the received signal scattered or

reflected by the ocean environment. This type of inference

requires an accurate model for the interaction of acoustic

waves with inhomogeneous sediments.

For stratified sediments, a simple, analytically tractable

solution for the scattering cross section can be found if an

incident plane wave is assumed (e.g., see Jackson and

Richardson, 2007; Morse and Ingard, 1968; Ogilvy, 1991;

Tatarski, 1961, and numerous references therein). The plane-

wave incident field assumption is adequate in some experi-

mental setups, e.g., where the incident grazing angle does not

vary appreciably within the ensonified area. In many scenar-

ios with a compact source, the plane-wave assumption is

inaccurate, even when the far-field criterion for the source is

met, e.g., near vertical incidence for interface scattering

(Hellequin et al., 2003; Jackson and Richardson, 2007, p.

502), and for cases where in the incident field the sub-bottom

region contains significant curvature (Holland and Neumann,

1998). In these cases, returns from the interface, volume, and

sub-bottom interfaces may not be separated in time, and each

has its own intensity time-dependence. If a model is used

with a plane-wave incident field it may not accurately capture

the time-dependence of the received field. Thus, plane-wave

quantities, such as the scattering cross section, sometimes

cannot be directly estimated from short-range reverberation

measurements with a point source (Tang and Frisk, 1992).

More involved modeling of the experimental geometry must

be performed since the geometry-dependent components in

the sonar equation cannot be simply inverted for scattering

strength.

One of the early full-wave models for sub-bottom

scattering from a broadband point source was Tang and

Frisk (1992), using a wavenumber integration approach to

calculate the scattered field from individual realizations of

sound speed fluctuations. Related work includes LePage and

Schmidt (2000, 2003) and Schmidt and Kuperman (1995),

who also used a wavenumber integral approach. Recently,

Tang and Jackson (2017) derived a full-wave sub-bottom

scattering model, called TDSS (time-domain model for

seafloor scattering), that produces the formally averaged

time-dependent mean square acoustic pressure from arbi-

trary roughness or volume heterogeneity spectra from a

broadband point source. Apart from the perturbation

assumption for scattering, Tang and Jackson’s model con-

tains no other approximations and shows modest agree-

ment with the narrowband sonar equation for simple

seafloors.a)Electronic mail: dolson@nps.edu, ORCID: 0000-0002-7928-0468.
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In this work, we show that the discrepancies between

the TDSS model and the sonar equation in Tang and

Jackson (2017) are due to their choice of geometry and sig-

nal parameters. Once the water depth becomes large com-

pared to the spatial extent of the transmitted pulse, the two

models show much better agreement. However, deep water

environments present a computational challenge.

The TDSS model requires the evaluation of multiple

nested highly oscillatory integrals. At low frequencies and

for sources close to the seafloor, calculation of these inte-

grals can be performed in a reasonable amount of time using

direct numerical quadrature, or in the case of LePage and

Schmidt (2003), using a fast Hankel transform. For high fre-

quencies, and deep water scenarios in which the source and

receiver altitudes are large compared to the acoustic wave-

length, the computational cost in both central processing

unit (CPU) time and memory becomes prohibitive.

In this work, we detail an efficient method to calculate

the two-dimensional (2D) oscillatory integrals in the TDSS

model using a technique from Levin (1982) and Olver

(2006). We call our implementation TDSS-L. This type of

numerical integration has been previously used in geoa-

coustic inversion of the spherical wave reflection coefficient

(Quijano et al., 2015), which involves a single highly oscil-

latory integral. The number of oscillations in the integrands

depends heavily on source/receiver height above the seabed

and frequency. Therefore, the computational cost of using

standard numerical techniques becomes enormous for

source/receiver depths near the sea surface in deep ocean

environments at frequencies of hundreds or thousands of

hertz. The fast integration technique described in this paper

opens the door to computing the received intensity in this

environment.

Several properties of the oscillatory integrals in the

TDSS model prevent straightforward application of the

Levin technique. The first is that the TDSS model contains

weakly singular integrals, which cannot be directly used in

the Levin method. We detail a method to overcome this

impediment using variable transformations. The second is

that the oscillatory part of the integrands in the TDSS model

contains terms with variable instantaneous frequency (i.e.,

nonlinear phase) of the form exp ½iq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðK1=kwÞ2

q
�, where

kw is the wavenumber in water, q determines the number of

oscillations, and K1 is a variable of integration. The Levin

technique has an error independent of q, but an error that

increases as K1 approaches kw. Straightforward application

of the Levin technique to this integrand can lead to large

errors, and suboptimal efficiency. To mitigate this draw-

back, we develop a nonuniform sampling technique for the

oscillatory integrals.

Large source receiver altitudes provide a strenuous test

of the TDSS model and also a suitable test against the nar-

rowband sonar equation. In Tang and Jackson (2017), mod-

est agreement between the TDSS model and narrowband

sonar equation for halfspace environments is observed. The

model mismatch was larger than one would expect given

the simplicity of the environment. In the present work, we

present comparisons between the TDSS model and narrow-

band sonar equation for large source and receiver altitudes

and find much better agreement. Based on results in the

present work, the previous discrepancies resulted from the

inadequacy of the narrowband sonar equation for small

source/receiver height and wider bandwidth, since TDSS

models the point source geometry and broadband scattering

exactly. We also compare the TDSS model with the sonar

equation for a single refracting layer, which is an important

test of the physics in the TDSS model given that sediment

sound speed generally increases with depth in marine sedi-

ments. These model-model comparisons are more success-

ful than presented in Tang and Jackson (2017), and provide

more evidence that TDSS is a physical sound model.

Results are also given from a deep water complex turbidite

environment, which contains strong stratification and can-

not be accurately modeled using the sonar equation

approach.

In Sec. II, the basic geometry, environmental proper-

ties, and source characteristics are given. We give an over-

view of the TDSS model of Tang and Jackson (2017) in

Sec. III, as well as a discussion of its computational cost in

terms of environmental and geometrical parameters.

Numerical integration techniques are described in Sec. IV,

beginning with a generic method for performing 2D integra-

tion over the domain required by the model. Then in Sec. V,

fast methods for computing highly oscillatory integrals are

reviewed and applied to the weakly singular integrands for

the TDSS model. Results for several simple scenarios and a

complex environment are given in Sec. VI with conclusions

given in Sec. VII.

II. ENVIRONMENT, GEOMETRY, AND SOURCE
CHARACTERISTICS

Although the TDSS model can treat scattering due to

both rough interfaces and heterogeneous volumes, only

interface scattering is treated here. The fast integration

method presented in this work is applicable to both of these

formulations since both of them employ 2D oscillatory inte-

grals of very similar forms.

The geometry is shown in Fig. 1. The source and

receiver altitudes above the water–sediment interface are

specified by zS and zR, respectively. The seafloor consists of

N fluid layers with the layer number denoted by n. The

water column is taken to be n¼ 0 and is a semi-infinite half-

space. Layer N is also a semi-infinite halfspace bounding

the stack of layers from below, and is referred to as the

“basement.” The total sediment thickness above the base-

ment is zD. Each fluid layer, as well as the basement, is

specified by its compressional phase speed ~cpn in m/s, den-

sity qn in kg/m3, and attenuation apn in dB/m/kHz. The

acoustic angular frequency is x, and the wavenumber in

water is kw ¼ x=cw, where cw is the speed of sound in water.

The wavenumber in each sediment layer is kn ¼ kwa�1
pn ,

where apn is the ratio between the complex sound speed in

layer n and the sound speed in water. Complex sound speed
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is computed using cpn ¼ ~cpn=ð1þ idpnÞ, where dpn ¼ apn

~cpn log ð10Þ=ð4� 104pÞ is a dimensionless loss parameter.

The density ratio, aqn, is the density of each layer divided by

the density of water.

Each interface between fluid layers can have an arbi-

trary roughness spectrum. For simplicity, here, we assume

an isotropic roughness power spectrum of the von K�arm�an

type given by

Wn Kð Þ ¼ w2

L�2 þ K2ð Þc2=2
; (1)

where Wn is the roughness power spectrum of interface n, K
is the magnitude of the transverse wave vector, w2 is the

spectral strength with units of m4�c2 , c2 is the spectral expo-

nent, and L is the outer scale with units of m. Note that K is

used for the spatial wavenumber of the roughness and not

the acoustic wavenumber.

The pulse transmitted by the source is assumed to be a

complex analytic signal, s(t), with a complex amplitude

spectrum, SðxÞ, given by

SðxÞ ¼
ð

dt sðtÞeixt: (2)

In the numerical examples given in Sec. VI, a Gaussian

pulse is used with the amplitude spectrum given by

SðxÞ ¼
ffiffiffiffiffiffi
2p
p

2Dx
e�ðx�x0Þ2=2ðDxÞ2 ; (3)

where

Dx ¼ pW3dBffiffiffiffiffiffiffiffiffiffiffi
log 2
p (4)

has units of rad/s and is proportional to the half power full

bandwidth, W3dB, with units of Hz. To compare to the nar-

rowband sonar equation, the integrated pressure squared, E,

of this pulse is required. We define s(t) to be dimensionless

and let the transmitted pulse 1 m from the source be

pðtÞ ¼ p0sðtÞ, where p0 has units of pascals and is related to

the source level. Using Parseval’s theorem (Oppenheim

et al., 1999), we obtain

E ¼
ð

df p2
0jSðx=ð2pÞÞj2 ¼

ffiffiffi
p
p

p2
0

4W3dB

: (5)

For all results presented below, a 0 dB re Pa source level is

used with W3dB ¼ 2:35 Hz. This small bandwidth is

employed so that we may compare the output of the TDSS

models with the narrowband sonar equation.

III. SCATTERING MODEL

A. Model description

The TDSS model (Tang and Jackson, 2017) predicts

the time-dependence of the mean squared pressure hjpðtÞj2i,
scattered by a stratified, rough, and heterogeneous seafloor

due to the incident field produced by a broadband pulse

from a point source. The model employs perturbation theory

for rough fluid–fluid interfaces (Kuo, 1964) and volume het-

erogeneities (Ivakin, 1998). Their model extends the work

by Schmidt and Kuperman (1995) for rough surface rever-

beration and LePage and Schmidt (2003) for volume rever-

beration by estimating the formally averaged second

moment of the acoustic field, hjpðtÞj2i, as opposed to real-

izations of the scattered pressure. We also note that, in gen-

eral, the TDSS model can handle general bistatic geometry,

but considerable simplifications can be made if the geome-

try is restricted to only vertically bistatic cases. In this

work, we make this restriction to the latter case. Study of

the general bistatic case, as well as efficient computational

algorithms appropriate to that geometry are fruitful areas

for future work. The TDSS model is, at present, restricted

to fluid sediment layers, but could be applied to elastic or

poroelastic seafloor by using the Green’s functions and their

gradients for those types of environments and starting with

a version of Eq. (13) in Tang and Jackson (2017) appropri-

ate for elastic or poroelastic boundary conditions.

The use of first-order perturbation theory limits the

validity of this formulation as it neglects multiple scattering

between different rough interfaces, higher-order scattering

from individual interfaces, assumes that the layer thickness

is large compared to the mean square roughness, and

neglects the effect of the roughness on the coherent back-

ground field. Multiple scattering is defined as scattering

(from a rough interface) of the scattered field from another

rough interface. It is important to differentiate this from

multiple reflections, which is treating all orders of reflection

present in the up- and down-going plane waves within a

layer. We note that multiple reflections are treated exactly

in this work (assuming the roughness does not affect the

coherent field), but multiple scattering is ignored—a possi-

ble significant limitation of this model.

FIG. 1. (Color online) An example of the TDSS model environment with a

three-layer sediment, a basement halfspace, and overlying water column.

The source and receiver heights are shown as well as the total sediment

thickness above the basement.
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The formulas required to compute the mean square

scattered pressure are reproduced here for completeness and

to facilitate discussion of the computational cost depen-

dence on the environment, geometry, and source pulse. A

complete derivation of this model can be found in Tang and

Jackson (2017), along with a thorough discussion of the

physical interpretation of each of its components.

In the TDSS model, the mean square pressure is com-

puted as

hjpðtÞj2i ¼
XN

n¼1

hjpnðtÞj2i; (6)

hjpnðtÞj2i ¼ 2p
ð1

0

dK WnðKÞKjhnðK; tÞj2; (7)

hnðK; tÞ ¼ p
ð1

0

dx SðxÞUnðK;xÞe�ixt; (8)

UnðK;xÞ ¼
k2

n

aqn
� k2

n�1

aqðn�1Þ

 !
gjnðKÞ �

1

aqn
� 1

aqðn�1Þ

 !

� g?nðKÞ þ
aqðn�1Þ

aqn
gznðKÞ

� �
; (9)

where kn is the complex wavenumber in layer n. Note that

the expression for UnðK;xÞ in Tang and Jackson (2017)

[their Eq. (18)] contains a sign error that has been corrected

here.

The functions hjpnðtÞj2i represent the scattered mean

square pressure from each interface n while other layers are

flat, and are summed to obtain the total mean square pres-

sure, hjpðtÞj2i. The isotropic roughness spectra used here

for each layer are given in Eq. (1). The function hnðK; tÞ is

a transfer function that gives the complex amplitude

response in the time domain for each horizontal Bragg

wavenumber.

The quantities UnðK;xÞ are the frequency domain

versions of hnðK; tÞ and do not depend on the transmitted

signal. The lower case g functions represent the 2D Fourier

transform of the two-way Green’s function. Their general

form is given by Eq. (14) in Tang and Jackson (2017). A

vertically bistatic geometry with isotropic roughness results

in considerable simplification. With these assumptions, the

two-way Green functions can be expressed in terms of a

double integral over wavenumber, which is used exclu-

sively in this work

gjnðK; f Þ ¼ �
1

2p

ð1
0

ð1
0

K1 dK1

kzwðK1Þ
K2 dK2

kzwðK2Þ
H1ðK;K1;K2Þ

� eikzwðK1ÞzSþikzwðK2ÞzR D1ðK1; znÞD1ðK2; znÞ;
(10)

g?nðK; f Þ ¼ �
1

2p

ð1
0

ð1
0

K2
1 dK1

kzwðK1Þ
K2

2 dK2

kzwðK2Þ
H2ðK;K1;K2Þ

� eikzwðK1ÞzSþikzwðK2ÞzR D1ðK1; znÞD1ðK2; znÞ;
(11)

gznðK; f Þ ¼
a2

pn

a2
pðn�1Þ2p

ð1
0

ð1
0

K1 dK1

kzwðK1Þ
K2 dK2

kzwðK2Þ

� eikzwðK1ÞzSþikzwðK2ÞzR D2ðK1; znÞD2ðK2; znÞ
� kzpnðK1ÞkzpnðK2ÞH1ðK;K1;K2Þ; (12)

D1ðK; znÞ ¼ AnðKÞ þ BnðKÞ; (13)

D2ðK; znÞ ¼ �AnðKÞ þ BnðKÞ: (14)

Here, i ¼
ffiffiffiffiffiffiffi
�1
p

, and kzwðKÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

w � K2
p

is the vertical

component of the wave vector in water corresponding to the

horizontal component K. The vertical component of the

wavenumber in layer n is denoted kzpn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pn � K2
q

, and in

water is kzw. Our Eq. (12) differs from Eq. (31) of Tang and

Jackson (2017) because we used the vertical component of

the wavenumber in each layer kzpn instead of the sine of the

grazing angle bn. Conversion of kpðn�1Þ to kpn requires the

factor apn=apðn�1Þ. In these formulas, all wavenumbers

(except for K) may be complex due to attenuation or an arti-

ficially introduced imaginary component of frequency. In

many experimental geometries, zR will be very close to zS

relative to the water depth, and it is useful to use the mean

altitude, zm ¼ ðzS þ zRÞ=2.

The functions H1 and H2 are defined by Watson (1944,

p. 411).

H1 ¼ 1=ð2pDÞ; (15)

D ¼ 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2K2K2

1 þ 2K2K2
2 þ 2K2

1K2
2 � K4 � K4

1 � K4
2

q
;

(16)

H2 ¼ H1

K2
1 þ K2

2 � K2

2K1K2

(17)

if the scalars K, K1, and K2 can form the sides of a triangle,

and are equal to zero if they cannot. This enforces the

Bragg condition, in which each horizontal Bragg wavenum-

ber K is matched to all possible combinations of incident

and scattered horizontal acoustic wavenumbers. The func-

tion H1 enforces the Bragg condition and is plotted for

K¼ 0.4 in Fig. 2. The parameters D1ðK; znÞ and D2ðK; znÞ
are defined in terms of the up- and down-going plane-wave

amplitudes [AnðKÞ and BnðKÞ, respectively] in layer n.

These coefficients are defined for a unit amplitude plane-

wave incident at the water–sediment interface.

The Fourier integral used in Eq. (8) is computed here

using complex contour integration, in which a small posi-

tive imaginary component to x is introduced, ~x ¼ xþ idx.

The imaginary frequency is compensated by multiplying

hnðK; tÞ by exp ðdxtÞ after the frequency integration is

performed. As recommended by Jensen et al. (2011, pp.

616–617), a value of dx ¼ log ð50Þ=T was used, where T is

the maximum time desired. Both UðK;xÞ and SðxÞ are

evaluated at complex frequencies, which can be performed

using analytic continuation. The complex contour serves

the dual purpose of attenuating aliased signals in the time
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domain, as well as mitigating the weak singularities due to

the factors of k�1
zw in the integrals for the g functions.

B. Computational issues

The computational cost for this model can be assessed by

examining each sum or integral. The sum over layers, integral

over frequency, and integral over the Bragg wavenumber are

all simple to compute compared to the frequency-domain

two-way Green’s functions, gjn; g?n, and gzn. These latter

functions require computation of highly oscillatory 2D inte-

grals. Therefore, the computational burden depends on the

time required to compute the g functions for a single value of

n, f, and K, and the number of points at which these functions

are required, which is N; Nf, the number of frequencies; and

NK, the number of wavenumbers, respectively. N is the num-

ber of sediment layers and is set by the environment. The

number of frequencies is set by the bandwidth, W3dB, and

maximum time required in the simulation, T, through

Nf ¼ W3dBT. For modeling direct-path measurements of bot-

tom scattering down to a minimum grazing angle, hmin, then

T / zm. The number of frequencies is then proportional to

W3dBzm.

The number of Bragg wavenumbers, NK, is set by the

dependence of hnðK; tÞ, the time-domain transfer function.

If we consider a simple halfspace, then hnðK; tÞ will have a

peak at the two-way travel time for each Bragg wavenum-

ber, which can be related to the grazing angle, h through

K ¼ 2kw cos h. Therefore, the sampling of the K axis should

be fine enough such that the difference in the two-way

travel time between adjacent wavenumber samples is less

than the temporal width of hn. As zm increases, the two-way

travel time between samples will increase linearly. Thus,

NK is directly proportional to zm. Two cases of hnðK; tÞ for a

sand halfspace example are shown in Fig. 3, one with an

undersampled K axis, and one with a properly sampled one.

A longer transmitted pulse will cause the temporal

width of hnðK; tÞ with fixed K to be increased (an example

is shown in Fig. 3), allowing for coarser sampling of the

wavenumber domain. Thus, Nk is directly proportional to

W3dB so long as a zero- or linear-phase pulse is employed.

Nk is proportional to T as well since for a given wavenum-

ber spacing, longer times require that smaller grazing angles

be included, up to a limit of 0�, corresponding to a Bragg

wavenumber K ¼ 2kw. For finite values of T, grazing angles

smaller than hmin ¼ sin�1ð2zm=ðcTÞÞ will not affect the

result, and the upper limit of K can be set based on this

angle. Again, since T is proportional to zm (for direct path

bottom scattering), Nk is proportional to another factor of

zm. To summarize, Nf is proportional to W3dBzm, and Nk is

proportional to W3dBz2
m. Thus, the number of points at which

the Green’s functions must be calculated is proportional to

NW2
3dBz3

m.

Next, we estimate the cost of calculating a single value

of the two-way Green’s functions, which are 2D oscillatory

integrals over an infinite domain. The support of the inte-

grals is restricted to the support of the H1 and H2 functions,

one of which is shown in Fig. 2. Given that the vertical

wavenumbers will be evanescent when K1 or K2 is greater

than kw, the upper limit of the integrals can be truncated

such that the exponentials decay to a sufficiently small

value compared to unity.

The main difficulty in numerically evaluating these

integrals is capturing the oscillations. The oscillations result

from the exponential functions, as well as the D1 and D2

functions that are related to the plane-wave coefficients in

each layer. The H1 and H2 functions have weak singularities

at their boundaries, which also causes difficulties with

numerical integration. For the complex exponential

FIG. 2. (Color online) Plot of H1, defined in Eq. (15) for K¼ 0.4 rad/m.

The tilted rectangle in the middle is the domain of support for H1 (i.e.,

Bragg scattering) and continues to the upper right.

FIG. 3. (Color online) jhnðK; tÞj for a sand halfspace computed with under-

sampled (top) and properly sampled (bottom) wavenumber axes for a

Gaussian source spectrum with a 3 dB bandwidth of 2.35 Hz.
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functions, the total phase change of each exponential

between 0 and kw is kwzm. Therefore, an approximate scal-

ing of the number of quadrature points to resolve the oscil-

lations in the product of the two exponential functions in

the 2D integral is Oðk2
wz2

mÞ. The thicker the sediment stack

compared to the average wavelength, the more peaks in An

and Bn there will be due to modes within the sediment

(Jensen et al., 2011, Chap. 5). An approximate scaling for

the number of oscillations in D1 and D2 is Oð�kpzDÞ for each

integral, where zD is the total sediment thickness, and �kp is

the average wavenumber over all sediment layers.

Typically, �kp is the same order of magnitude as kw, so we

will use OðkwzDÞ instead.

Combining the results of the previous five paragraphs,

the computational cost scales as OðNW2
3dBz3

mk2
wðz2

m þ z2
DÞÞ.

Here, we assume that kw represents the order of magnitude

of all wavenumbers. If extremely broadband simulations are

required, then the analysis will be slightly different. If the

average source/receiver altitude, zm, is large compared to k
and zD, then the computational cost will scale as Oðz5

mÞ. For

deep water scenarios, zm is Oð103Þ, and the computational

cost becomes impractical if direct numerical quadrature is

employed. For such scenarios, either more computing

resources could be used, or a more efficient numerical inte-

gration strategy could be employed. This work develops the

latter.

The computational method developed below addresses

the factors of ðkwzmÞ2 in the order of magnitude estimate.

The number of points required for standard quadrature is

approximately Nq ¼ ð10kwzm=ð2pÞÞ2, if ten points per oscil-

lation are used. For a frequency of 4000 Hz and zm of

4900 m (parameters used in the example below), then

Nq � 1010. The Levin method below uses a constant num-

ber of function evaluations as a function of zm for the 2D

oscillatory integrals. In the examples presented below, this

number is approximately 105. Thus, the Levin method pro-

vides a speedup factor of 105 at 4900 Hz and 102 at 200 Hz.

IV. NUMERICAL IMPLEMENTATION OF
OSCILLATORY INTEGRALS

In this section, methods are presented to evaluate the

oscillatory singular integrals over K1 and K2 in Eqs.

(10)–(12). We first introduce a generic form for the integra-

tion kernels,

Q ¼
ð ð

dK1dK2 /ðK1;K2ÞeiqgðK1;K2Þ; (18)

where /ðK1;K2Þ is the slowly varying portion of the inte-

gration kernel, and gðK1;K2Þ is the phase function, defined

below. The dimensionless parameter q ¼ kwzm approxi-

mately specifies the number of oscillations in K1 and K2

when divided by 2p. The functions / and g are different for

each of gj; g?, and gz. For the case of gj in Eq. (10), they

are

/ðK1;K2Þ ¼ K1

kzwðK1Þ
K2

kzwðK2Þ
H1ðK;K1;K2Þ

� D1ðK1; znÞD1ðK2; znÞ; (19)

gðK1;K2Þ ¼
zS

zm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

1

k2
w

s
þ zR

zm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� K2

2

k2
w

s
: (20)

Although the D1 and D2 functions are technically oscilla-

tory, the Levin integration technique requires that the oscil-

latory terms be given explicitly (e.g., complex exponentials

or Bessel functions; Levin, 1996; Quijano et al., 2015).

To compute the integral, the domain is truncated such

that the truncation location does not appreciably affect the

result. For K1, K2 � kw, the exponential term is evanescent,

and we can pick a maximum value for K1 and K2 such that

exponential term is suitably small. In this work, the method

defined in the appendix of Holland et al. (2012) was used to

compute the upper limit to K1 and K2. If the seafloor con-

tains layers with sound speed less than cw, then the D1 and

D2 terms can exhibit peaks when K1 or K2 is greater than

kw. Thus, we pick the greater of the limit based on the expo-

nential decay, or 1:25� x=minð~cpÞ, where minð~cpÞ is the

minimum phase speed of the sediment stack. This choice of

upper limit was found to be sufficient for the scenarios

examined in this work.

Once the upper limit of the horizontal wavenumbers has

been chosen, the domain of support for the integral is meshed

with triangles or squares. The integral can be computed for

each mesh element, and then summed, as recommended by

Iserles et al. (2006). The instantaneous frequency of the oscil-

lations is proportional to the gradient of the phase function, g.

For this problem, the gradient is small when K1 and K2 are

close to zero and grows without bound as K1 and K2 approach

kw (for real values of kw). This behavior can lead to errors and

suboptimal speedup if a mesh with constant size was used for

the entire domain.

To deal with the change in the phase gradient with

wavenumber, the mesh size was refined as rg increased.

This was implemented by first sampling the vertical wave-

number interval ½kw; 0� with equally spaced points to create

a vector in kz space. These points were converted to points

in the horizontal wavenumber space by using the formula,

K1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

w � k2
z

p
, which creates a vector of horizontal wave-

number points for the oscillatory part. The evanescent com-

ponent was created by sampling the interval kz ¼ i½0; kw�,
and converting to the horizontal wavenumber using the

same equation. An example of the sampled horizontal

wavenumber is illustrated in Fig. 4. Note that the spacing

between subsequent samples decreases as K1 approaches kw

from both above and below and increases away from it.

Sampled wavenumber axes were created for both the

K1 and K2 integration variables and were combined into a

2D grid by forming their tensor product. These points were

then used to create a triangular mesh. Mesh elements that

fell entirely outside the domain of support of the H1 and H2

functions were discarded. If an element intersected the
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domain of support, the points outside the boundary were

moved to the boundary. To handle the singularities in the

H1 and H2 functions, a small portion near the edge of the

boundaries is meshed with rectangular elements, also with a

varying mesh size. An example mesh is shown in Fig. 5.

Given this mesh, any numerical integration technique can

be used for each element, either direct quadrature or the

Levin technique.

Although no results using direct numerical integration

are presented here, a technique to compute these is briefly

described since the techniques to handle singularities are

also used in the fast Levin technique. Each triangle in Fig. 5

has a nonsingular (regular) integrand; therefore, it can be

computed using standard 2D Gauss quadrature, wherein the

integrand is sampled at various points within the triangle,

multiplied by weights, and then summed. For such an

implementation, the formulas tabulated by Cools and

Rabinowitz (1993) could be used, for example.

For elements bordering the singular boundary, standard

integration rules converge very slowly since the integrand is

weakly singular with Oðx�1=2Þ, where x is the distance from

the boundary. To speed up convergence, the integral was

transformed from (K1,K2) space into new coordinates, (u,v),

where the Jacobian of the transformation regularizes the

singularity. This process is performed by first transforming

K1 and K2 to variables u0; v0 that are parallel and perpendic-

ular to the singular boundary, respectively, with v0 ¼ 0 or

u0 ¼ 0 being on the boundary (depending on the orienta-

tion). Then, the primed variables are transformed to u,v
such that the coordinate normal to the singular boundary is

mapped to the square root of itself. For most of the singular

elements, only one edge is singular. Elements at the corners

have two singular edges and both u0 and v0 are mapped to

their square roots. These variable transformations allow the

integral to be computed as

Q ¼
ð ð

dudv /ðK1ðu; vÞ;K2ðu; vÞÞJ½ �eiqgðK1ðu;vÞ;K2ðu;vÞÞ;

(21)

where J is the determinant of the Jacobian matrix, ~J , given

by

~J ¼

@K1

@u

@K2

@u

@K1

@v
@K2

@v

2
6664

3
7775: (22)

The H1 and H2 functions have three singular bound-

aries, and a different transformation was used depending on

which boundary the element was situated. This was imple-

mented in our software by testing whether the vertices of

each element intersected each boundary. Let boundary 1 be

along the line K2 ¼ K1 � K, boundary 2 be along the line

K2 ¼ K1 þ K, and boundary 3 be along the line K2

¼ �K1 þ K. We denote the different transformed variables

as ui,vi for transformations for elements bordering a single

boundary, i, with i ranging from 1 to 3. If the element bor-

ders on two boundaries, then the variables are denoted uij,vij

where i and j denote the boundaries. The meshing technique

ensured that elements can only border on boundary 1 and 3,

or 2 and 3. The variable transformations are

u1 ¼
1

2
K1 þ K2ð Þ; (23)

v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K1 þ K2 þ K
p

; (24)

u2 ¼
1

2
K1 þ K2ð Þ; (25)

FIG. 4. (Color online) An illustration of the nonlinear sampling of the hori-

zontal wavenumber axes. The vertical axis shows the sampled horizontal

wavenumber normalized by the real part of the wavenumber in water, and

the horizontal axis shows the sample number. Circles denote the oscillatory

part, and crosses denote the evanescent part.

FIG. 5. An illustration of the mesh used to sample the wavenumber

domain. The value of K is set to 0.4 rad/m as in Fig. 2. The elements shaded

with the darkest gray color are completely oscillatory. Elements shaded

with medium gray are oscillatory in one variable and evanescent in another.

Elements shaded with the lightest gray are completely evanescent. The ele-

ments with no shading denote the singular boundary.
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v2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 � K2 þ K
p

; (26)

u3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 þ K2 � K
p

; (27)

v3 ¼ K1 � K2; (28)

u13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 þ K2 � Kð Þ=2

p
; (29)

v13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�K1 þ K2 þ K
p

; (30)

u23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 þ K2 � Kð Þ=2

p
; (31)

v23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 � K2 þ K
p

: (32)

The Jacobian matrices corresponding to these transforma-

tions can be computed analytically.

If these variable transformations are applied to triangu-

lar elements, the element shape is distorted. On the other

hand, rectangles with sides parallel and perpendicular to the

singular boundary are mapped to rectangles in (u,v) space.

This invariance is the reason for which rectangular elements

are used for the weakly singular border. Standard 2D quad-

rature routines can then be applied to the integrand in (u,v)

space.

V. FAST LEVIN INTEGRATION

When the oscillation parameter q becomes large, the

direct integration techniques developed in Sec. IV require

many integration points per element. Consequently, the

computational cost becomes quite large. In this section, we

use 2D Levin-type integration over each element to reduce

the computational cost (Levin, 1982). An algorithm for

computing the Levin method over general domains was

developed by Olver (2006) and specialized here to triangles

and rectangles. Although a 2D algorithm is given in Levin

(1982), it is only valid for rectangular domains whose sides

are parallel to the independent variable axes.

Levin’s integration technique involves solving a non-

oscillatory differential equation whose terms involve /, q,

and g. For 2D integrals, this technique is used to convert the

2D integral to a one-dimensional (1D) integral over the

boundary via Stokes’ theorem. Then, the 1D technique is

used to convert the integral over each boundary segment to

an evaluation at the endpoints via the fundamental theorem

of calculus. Since 2D Levin integration requires application

of the 1D version, the 1D version will be described first.

A. 1D Levin integration

The 1D Levin integration method computes integrals of

the type (Levin, 1982)

Q1 ¼
ðyu

yl

dy /ðyÞeiqgðyÞ; (33)

where y is a generic variable of integration. This technique

relies on the basic idea that if a function F(y) could be found

that satisfies the equation

/ðyÞ ¼ dFðyÞ
dy
þ iq

dgðyÞ
dy

FðyÞ; (34)

then the integral in Eq. (33) can be computed by

Q1 ¼ FðyuÞeiqgðyuÞ � FðylÞeiqgðylÞ: (35)

Since Eq. (34) has no complex exponentials, its oscillatory

behavior has been significantly reduced.

Since a solution to this differential equation is rarely

analytically available, it is solved numerically. We follow

Levin (1982) and use the collocation method. Let yp be a set

of pþ 1 points in the interval ½yl; yu�. Note that these points

must include the endpoints in order to achieve the required

asymptotic error, as noted by Levin (1982) referencing de

Boor and Swartz (1973). Let vp be a linear combination of

p-order basis polynomials expressed as

vpðyÞ ¼
Xp

j¼0

djv
p
j ðyÞ; (36)

where vp
j is the jth-order basis function (with a maximum of

p), and dj are unknown coefficients.

If the basis functions are substituted in Eq. (34) and the

collocation method is applied, then we obtain the linear

algebra problem

Vd ¼ /ðymÞ; (37)

where d is a vector of unknown coefficients, dj, V is a

matrix with elements

Vjm ¼
dvp

j ðyÞ
dy

����
y¼ym

þ iq vp
j ðyÞ

dgðyÞ
dy

� �����
y¼ym

; (38)

where ym is the mth collocation point of yp, and vp
j is the jth-

order basis function. The linear system can be solved using

standard techniques and the solution substituted into Eq.

(35) by using vp in place of F. This approximation is

denoted by Q1p for a pth-order polynomial approximation

to the 1D integral in Eq. (33).

The approximate solution, Q1p was shown by Olver

(2006) to have an absolute error, jQ1 � Q1pj of order

Oð1=qÞ so long as the products vp
j g are linearly independent,

and the points yp include the endpoints of the interval. Since

the magnitude of the integral jQ1j is asymptotically of order

Oð1=qÞ, the Levin method has constant relative error as a

function of q with the constant depending on p. As the num-

ber of collocation points and the order of the polynomial

function are increased, the accuracy for a given q increases.

However, the matrix V can become poorly conditioned for

very large numbers of basis functions or small values of q.

In these cases, significant numerical errors arise if Gaussian

elimination is used but can be mitigated by using a trun-

cated singular value decomposition.

B. 2D Levin integration

The 2D Levin method exploits Stokes’ theorem to con-

vert the 2D integral over a domain into a set of 1D integrals
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over its boundaries (Olver, 2006), which can then be solved

using the 1D Levin method. To solve the 2D oscillatory

integral in Eq. (18), we look for a vector function of two

variables FðK1;K2Þ ¼ ðFK1
ðK1;K2Þ;FK2

ðK1;K2ÞÞ that satis-

fies the equation (omitting the function arguments for

brevity)

/ ¼ r � Fþ iqrg � F; (39)

where the divergence and gradient are in terms of K1

and K2.

Let y be the independent variable of the parametric

curves K1ðyÞ;K2ðyÞ that describe the boundary, which in

this case are piecewise-linear functions. Using Stokes’ theo-

rem, the 2D integral can be converted to the 1D integral

Q ¼
ð

dyeiqgðK1ðyÞ;K2ðyÞÞ FK1
ðK1ðyÞ;K2ðyÞÞ

dK2

dy

�

�FK2
ðK1ðyÞ;K2ðyÞÞ

dK1

dy

�
: (40)

This is a 1D integral of the form Eq. (33) where the term in

parentheses can be substituted for /ðyÞ, and solved using

the 1D Levin method. For the triangular and rectangular

elements used in this work, this integral is computed for

each straight line segment constituting the boundary and

then summed to obtain the integral over the element.

To perform these steps numerically, the vector function

F is approximated using the collocation method. This time,

2D vector polynomials are used to construct the basis func-

tions. If independent polynomials are used to construct FK1

and FK2
, then the resulting linear system will be undeter-

mined. In this work, a scalar polynomial as a function of

two dimensions of order p was constructed, vpðK1;K2Þ. It

was converted into a vector by multiplying by the constant

n ¼ ðn1; n2Þ, where jnj ¼ 1. Orthogonal polynomials on the

triangle were used as basis functions and computed using

software accompanying Hesthaven and Warburton (2008).1

The 2D Levin method can suffer from numerical issues

if the vector n is perpendicular to either rg or the element

boundary as discussed in Olver (2006). Both of these cases

can cause the columns of the matrix used in the linear

system to be linearly dependent. This, in turn, causes the

matrix to be poorly conditioned on the order of machine

precision. To mitigate these effects, n was selected such

that it was neither perpendicular to rg nor the boundary.

Further discussion of these issues can be found in Olver

(2006). For the singular elements, the Levin method must

be modified to account for the weakly singular boundaries.

The same variable transformation is used as for the direct

quadrature technique. The Levin integration technique can

be applied to the product (/J) in (u,v) space.

In the direct integration method, 2D quadrature techni-

ques can be selected such that all the evaluation points are

in the interior of the element and not on the boundary.

While the quadrature rule converges slowly, all function

evaluations are finite. Levin’s method, in contrast, requires

evaluation at the endpoints to maximize the convergence

rate (de Boor and Swartz, 1973; Levin, 1982). For singular

elements, care must be taken to use the limit of /J as points

approach the boundary rather than evaluating / and J and

taking their product.

Since the Jacobian cancels out the singularity, the

numerical approximation of this equation with orthogonal

polynomials is appropriate. However, problems arise when

computing the 1D boundary integrals that result from the

application of Stokes’ theorem. The transformation that

cancels out the singularity warps the g functions such that

its gradient is zero at endpoints that lie on the singular

boundary. In this case, the columns of the matrix in the lin-

ear system are no longer linearly independent at the bound-

ary point (Olver, 2007). To mitigate this problem, standard

Gauss-Legendre quadrature is used for a small portion of

the 1D integral near the stationary point (maximum of 10p
of phase change in the exponential), and Levin integration

is used for the rest of the integral.

VI. RESULTS AND DISCUSSION

In this section, the TDSS-L model output, hjpðtÞj2i,
computed using the technique described in Sec. V is pre-

sented for several environments: (1) a halfspace (either sand

or mud), (2) a refracting mud layer over a sand halfspace,

and (3) a turbidite sequence. In the first two scenarios, the

TDSS-L model is compared with a sonar equation-type

model. These model-model comparisons extend those per-

formed by Tang and Jackson (2017) and provide additional

evidence that the TDSS model is sound and the mathemat-

ics have been correctly implemented in the TDSS-L model,

especially for the refracting mud layer case. The third

scenario presents a considerably more complex sedimentary

environment to demonstrate the TDSS model’s ability to

handle strongly layered seafloors. All of these scenarios use

an altitude of zm¼ 4900 m. The K1,K2 domain was meshed

using 30 intervals between 0 and kw, and 10th-order polyno-

mials were used in the collocation method. Although results

were not computed using quadrature, it is estimated that the

cases at 200 Hz provide a speedup of 2 orders of magnitude,

and at 4000 Hz, a speedup of 6 orders of magnitude com-

pared to direct quadrature.

Simulations with a very large source/receiver altitude

compared to the spatial resolution of the transmitted pulse

will provide appropriate situations for comparison to the

narrowband sonar equation. For the examples presented in

Tang and Jackson (2017), small but noticeable differences

were evident between the sonar equation models and the

TDSS model (especially for the sand halfspace scenario) at

an altitude of 200 m, center frequency of 200 Hz and tempo-

ral resolution (3 dB full width) of approximately 0.059 s.

The temporal resolution of this pulse corresponds to an

angular resolution on the seafloor of about 13� centered at

30� grazing angle. This large equivalent angular width of the

transmitted pulse causes significant smoothing that can

smear the critical angle peak. This same pulse has an angular
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resolution of 0.5� at 30� grazing angle when a source/

receiver altitude of 4.9 km is used. Therefore, deep water

scenarios provide much less smoothing in angle for narrow-

band pulses. We focus here on narrowband pulses because

broadband effects, such as the change in Bragg condition for

each frequency, are included in the TDSS model but not in

the narrowband sonar equation. Deep water environments

and narrowband pulses provide cases in which the TDSS

model should provide the same results as the narrowband

sonar equation and, thus, constitute an appropriate test of the

model physics in the TDSS model.

In the first two environments, comparisons are made to

SCARAB, a sonar equation-based model that was devel-

oped to model the arrival structure and intensity of sub-

bottom scattering (Holland and Neumann, 1998). It avoids

the usual plane-wave approximation common to many

sonar equation models by discretizing the sub-seabed into

voxels and then summing in time the appropriately scaled

and time-delayed scattered intensity from each voxel. It

uses a ray approximation for the Green’s function into and

out of the sediment. It compares closely to a full-wave scat-

tering model (LePage and Schmidt, 2003) where effects of

caustics, multiple reflection from sub-bottom interfaces,

and the evanescent field in the sediment are insignificant.

The small-roughness perturbation approximation is used for

the scattering cross section, and thus comparisons between

the TDSS model and SCARAB cannot differentiate where

the first-order perturbation term fails to sufficiently model

the scattered field. These model-model comparisons, there-

fore, only test whether the TDSS model is modeling the cor-

rect propagation physics of a point source overlying a

simple seafloor.

A. Scattering from a halfspace

A halfspace example using parameters appropriate for

a sandy seafloor sound speed ratio ap ¼ cp1=cw ¼ 1:17=
ð1þ 0:0096iÞ, and density ratio of aq ¼ q1=qw ¼ 2 are

shown in Fig. 6(a). Parameters are summarized in Table I.

Attenuation in the seawater is not included in this or any of

the following cases.

Comparisons to the sonar equation are made at three fre-

quencies, 200 Hz, 1000 Hz, and 4000 Hz, to test whether the

TDSS model gives the correct frequency dependence. Solid

curves represent the TDSS-L model, and dotted-dashed black

curves denote the narrowband sonar equation using perturba-

tion theory. The model-model comparisons agree quite well,

except for the onset of the pulse as it begins to interact with

the bottom. Near the onset of the pulse, the two models agree

for 200 Hz, but the sonar equation overpredicts this region as

the frequency is increased to 1000 and 4000 Hz. If a smaller

effective outer scale, Leff, is used for the roughness spectrum,

then a nearly perfect fit near pulse onset (specular direction)

can be obtained with Leff decreasing as the wavelength

decreases. This effect is likely due to the Bragg condition

being enforced exactly for all frequencies in the TDSS model,

whereas it is only enforced in the scattering cross section at a

single frequency for the sonar equation. Small oscillatory

deviations in the TDSS model on the order of 0.1DB are pre-

sent and can be decreased by refining the mesh used to inte-

grate over the ðK1;K2Þ domain. The peak at the critical angle

at about 13 s is also well-modeled at all frequencies.

Comparisons for a halfspace using parameters appropriate

for a muddy seafloor with ap ¼ 0:98=ð1þ 6841:7� 10�5iÞ
and aq ¼ 1:4 are presented in Fig. 6(b). Geoacoustic and

roughness properties are summarized in Table I. The agree-

ment between the two models is again excellent, except for

the onset of the pulse, and correctly predicts the frequency

dependence. Very slight oscillatory errors in the TDSS model

are present, similar to the sand halfspace.

B. Scattering from a refracting layer

A more geologically realistic seafloor includes refrac-

tion in the sediment (due to increasing sound speed with

depth), which is a good test of the physics in the TDSS

model. The sound speed profile as a function of depth z (ref-

erenced to the water–sediment interface) is

~cpðzÞ ¼ cwv ð1þ bÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2gz

ðbþ 1Þv

s
� b

2
4

3
5; (41)

FIG. 6. (Color online) Model-model comparisons for the scattered mean

square pressure from a sand (a) and mud (b) halfspace at 200 Hz, 1000 Hz,

and 4000 Hz.

TABLE I. Geoacoustic and roughness parameters for the halfspace

environment.

Parameter name Units Mud Sand

Sound speed ratio — 0.98 1.17

Density ratio — 1.4 1.8

Attenuation dB/m/kHz 10�3 0.3

Spectral exponent — 3 3

Spectral strength m4�c2 10�4 10�4

Outer scale m 10 10
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where v ¼ ~cpð0Þ=cw is the ratio between the sediment phase

speed at the interface and the water sound speed, g is the

sound speed gradient at the water–sediment interface in s�1,

and b is the curvature. This expression follows Hamilton’s

observation (Hamilton, 1980) that deep sea sediments exhibit

a sound speed gradient of Oð100Þs�1 at the water–sediment

interface, which decreases with increasing depth in the sedi-

ment. For this test case, v ¼ 0:98, g¼ 1.3 s�1, and b ¼ �0:5.

Geoacoustic and roughness properties for this environment

are summarized in Table II. Only the water–sediment inter-

face and mud–sand interface are rough.

The version of the TDSS model used in this work

requires homogeneous layers, thus, here the profile is dis-

cretized into nine unevenly spaced layers, as seen in Fig. 7,

to approximate a 100 m thick layer of mud overlying a sand

halfspace. The narrowband sonar equation model,

SCARAB, uses a ray approximation for the refracting sedi-

ment and finds eigenrays analytically for this sound speed

profile (i.e., does not discretize the sound speed profile).

Refraction in the mud changes the time-dependence of the

mean square pressure scattered by the mud–sand interface

by altering the local grazing angle of the field incident on

that boundary, as well as increasing the ray path length

through the mud.

The comparison between the TDSS-L model (a full-

wave solution in a stratified medium) and SCARAB (ray

approximation) for the refracting layer case is shown in

Fig. 8. Figure 8(a) shows the contribution from the water–

mud interface where excellent agreement is seen at 1000

and 4000 Hz, except for the onset of the pulse (as in the

halfspace cases). At 200 Hz, oscillations are apparent in the

TDSS-L model, but not in SCARAB. The TDSS model

oscillations arise from fully coherent constructive and

destructive interference between the water–sediment inter-

face and sediment–basement interface reflections. The

reflection coefficient [a crucial component of the scattered

field manifest in the up- and down-going wave amplitudes,

AnðKÞ and BnðKÞ] is calculated with the assumption that

each interface is flat (i.e., no roughness). Thus, the TDSS

model overpredicts the effect of the oscillations (interfer-

ence) since, in reality, the roughness would degrade/dimin-

ish the oscillation amplitude. SCARAB by contrast,

assumes that scattering and reflection are both fully incoher-

ent and thus underpredicts the effect of the oscillations

(interference). In summary, neither model treats this prob-

lem exactly, but both can be considered as end members for

the fully coherent/incoherent approximation to the scattered

mean square pressures of a rough layer. Note that the oscil-

lations are apparent in the TDSS model only at 200 Hz since

the round trip attenuation through the mud layer is only

4 dB. At 1000 and 4000 Hz, the round trip attenuation is 20

and 80 dB, respectively, and thus does not lead to a detect-

able oscillation.

Figure 8(b) shows scattering from the mud-sand (base-

ment) boundary. At 200 Hz, the TDSS model oscillations

are much weaker than those from the water–mud interface

but occur for the same reasons. The agreement between the

two models at 1000 and 4000 Hz is very good. Finally, we

TABLE II. Geoacoustic and roughness parameters for the refracting layer

environment.

Parameter name Units Mud Sand

Sound speed ratio — 0.98 1.13

Sound speed gradient s�1 1.3 —

Sound speed curvature — �0.5 —

Density ratio — 1.4 2.0

Attenuation dB/m/kHz 0.1 0.3

Spectral exponent — 3 3

Spectral strength m4�c2 10�4 1.2 �10�3

Outer scale m 100 100

FIG. 7. Sediment geoacoustic profile for a refracting mud layer overlying a

sand halfspace. In the plot for the sediment sound speed, cp, the profile

used for the TDSS model is shown as a black staircase, whereas the profile

used for SCARAB is gray and continuously varying. Depth on the vertical

axis is referenced to the water–sediment interface.

FIG. 8. (Color online) Comparison of the TDSS model with SCARAB for

the refracting case (geoacoustic profile shown in Fig. 7) for (a) water–mud

interface, and (b) mud–sand interface.
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note that the slight fluctuations in SCARAB are discretiza-

tion artifacts and can be reduced by finer sampling of the

environment in range.

C. Scattering from a turbidite sequence

Abyssal plains cover a huge portion (more than 50%)

of the Earth’s surface. They are composed of alternating

fine-grained and coarse-grained sediment layers, termed tur-

bidite sequences (see, for example, Middleton, 1993). The

fine-grained (muddy) layers come from the constant but

slow deposition of pelagic particles. The coarse-grained

silts and sands come from episodic seismically induced

underwater avalanches of silt and sand from the continental

shelf. Turbidite sequences occur in many different geologic

settings, but here we consider a case from an abyssal plain

where an individual pelagic or terrigenous layer is typically

O(10�1–100) m thick, and the total sediment thickness is

typically O(103) m, although we only use a 100 m thick sed-

iment here.

The effect of turbidites on acoustic reflection is profound

and a strong function of frequency. At sufficiently low fre-

quencies, the alternating pelagic/terrigenous sequence can be

treated as an effective medium. At higher frequencies, the

reflection coefficient increases dramatically, and the layering

must be accounted for explicitly (Holland and Muncill, 1993).

In Holland and Muncill (1993), a simplified stochastic model

of a turbidite sequence successfully explained the measure-

ments in which the pelagic layer thickness followed a gamma

function distribution, but the terrigenous layer thickness was

fixed. Here, the probability density function V for the pelagic

(mud) layer thickness, ‘ is Vð‘Þ ¼ ‘ exp ð�2‘=lÞ=ðl=2Þ2,

where l is the mean of the distribution and the standard devi-

ation is l=
ffiffiffi
2
p

. It was also found in Holland and Muncill

(1993) that including the sound speed depth dependence was

important for both layers. Here, the sound speed profile

follows Eq. (41) with the same parameters as in the refracting

case. This is the geoacoustic model used to generate Fig. 9

with parameters given in Table III. Roughness parameters are

also given in Table III. For all interfaces within the sediment

sequence, including the basement, the sand roughness param-

eters are used. At the water–mud interface, the mud parame-

ters are used.

Results from the TDSS-L model are shown for this

environment, but not for SCARAB since the ray approxima-

tion therein will fail for layer thicknesses smaller than a

wavelength. These results model multiple reflections due to

the background layering exactly, but assume there is no

effect on the coherent field due to the roughness. Multiple

scattering between different rough interfaces is ignored,

which may be an important factor in scattering from these

environments. The total mean square pressure due to all

(summed) rough layers is shown in Fig. 10. Note that the

mean square pressure versus time is relatively smooth at

200 Hz, while at 1000 and 4000 Hz, significant oscillations

are evident despite the TDSS model yielding a formal aver-

age over roughness. For wavelengths much greater than the

mean layer thickness, i.e., at 200 Hz, the layered medium

behaves as an effective medium, similar to that for the

reflection coefficient (Holland and Muncill, 1993).

FIG. 9. Sediment geoacoustic profile for a turbidite environment. The

depth on the vertical axis is referenced to the water–sediment interface.

TABLE III. Geoacoustic and roughness parameters for the turbidite

environment.

Parameter name Units Mud Silt

Mean layer thickness m 1 0.25

Interface sound speed ratio — 0.98 1.053

Density kg/m3 1400 1800

Attenuation dB/m/kHz 0.01 0.1

Sound speed gradient s–1 1.3 1.3

Spectral strength m4�c2 1� 10�4 1.2 �10�3

Spectral exponent — 3.0 3.0

Outer scale m 10 10

FIG. 10. (Color online) Scattered mean square pressure from a deep water

turbidite sequence.
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However, as frequency increases, stop- and passbands

emerge as a result of the quasi-periodic sequence. In con-

trast to the other test cases (Figs. 6 and 8), where for times

beyond the normal incidence (6.5 s) the received level

increases monotonically at 3 dB/per octave, here, it is

roughly the same at 1000 and 4000 Hz.

Although other aspects of the TDSS-L model predic-

tions could be explored, the main purpose of exercising the

TDSS-L model in this environment was to demonstrate its

ability to treat challenging sedimentary environments, here,

a finely layered random medium. In addition, this environ-

ment was computationally challenging for two reasons: the

source/receiver height was large, zm ¼ 4900 m, and the

number of layers, N¼ 157, was also large.

VII. CONCLUSION

Sediment interface roughness and volume heterogene-

ities exist across a broad range of scales, which leads to

scattering of acoustic waves across a broad frequency range.

Although sediment scattering models based on a plane-

wave incident field have a relatively low computational

cost, full-wave models needed to interpret measurements,

i.e., treat a point source, have a very high computational

cost. The computational cost is so high that they have been

impractical for interpreting measurements in deep ocean

environments. We show a method for substantively reduc-

ing the computational cost of the wavenumber integration-

based TDSS model (Tang and Jackson, 2017), using

methods developed by Levin (1982) and Olver (2006).

There are hurdles to applying the Levin method to the

TDSS model, for example, the presence of singularities and

nonlinear phase terms in the integrand. Detailed solutions to

these hurdles are provided.

Several deep water test cases were used to validate the

computationally efficient model, TDSS-L. Comparisons

indicated that the underlying theory for the TDSS model

and its numerically efficient implementation here are cor-

rect, especially for the nontrivial case of a refracting mud

sediment layer. These cases extend those presented in Tang

and Jackson (2017), and demonstrate better agreement

between the TDSS model and the sonar equation. A case

was also presented with a complex random turbidite

sequence, which demonstrates some of the potential of the

TDSS model, since it is an environment that the narrow-

band sonar equation is not expected to model exactly. For

these problems, the computational cost was reduced by

between 2 and 5 orders of magnitude over standard quadra-

ture methods, depending on the frequency.

Up to now, standard deep water scattering measure-

ments (with source and receiver depths small with respect

to water depth) could generally only be analyzed with

ray-based models. While ray-based models are reasonably

accurate in simple environments, they cannot treat the more

complex seabed structure. The reduction in computational

cost for this full-wave scattering model opens the door to a

more complete understanding of deep ocean sediment heter-

ogeneities that lead to scattering.

The computational approach detailed here renders deep

ocean calculations practical up to frequencies in the thou-

sands of hertz. The approach was demonstrated for rough

surfaces but can be directly applied to volume heterogene-

ities. The approach can also be applied to other scattering

models based on wavenumber integration.
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