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One of the key distinguishing aspects of underwater manipulation tasks is the perception
challenges of the ocean environment, including turbidity, backscatter, and lighting effects.
Consequently, underwater perception often relies on sonar-based measurements to
estimate the vehicle’s state and surroundings, either standalone or in concert with
other sensing modalities, to support the perception necessary to plan and control
manipulation tasks. Simulation of the multibeam echosounder, while not a substitute
for in-water testing, is a critical capability for developing manipulation strategies in the
complex and variable ocean environment. Although several approaches exist in the
literature to simulate synthetic sonar images, the methods in the robotics community
typically use image processing and video rendering software to comply with real-time
execution requirements. In addition to a lack of physics-based interaction model between
sound and the scene of interest, several basic properties are absent in these rendered
sonar images–notably the coherent imaging system and coherent speckle that cause
distortion of the object geometry in the sonar image. To address this deficiency, we
present a physics-based multibeam echosounder simulation method to capture these
fundamental aspects of sonar perception. A point-based scattering model is implemented
to calculate the acoustic interaction between the target and the environment. This is a
simplified representation of target scattering but can produce realistic coherent image
speckle and the correct point spread function. The results demonstrate that this multibeam
echosounder simulator generates qualitatively realistic images with high efficiency to
provide the sonar image and the physical time series signal data. This synthetic sonar
data is a key enabler for developing, testing, and evaluating autonomous underwater
manipulation strategies that use sonar as a component of perception.
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1 INTRODUCTION

Simulation of robotic manipulation systems has proven its
usability and effectiveness for designing, testing, and
evaluating its capability (Cook et al., 2014). Especially for
underwater environments, operational demands make testing
the physical hardware costly and risky. It is critical to develop
manipulation strategies in complex and variable ocean
environments. Therefore, simulation capability to test rapidly,
and at low cost is critical to test new designs and system control
strategies. While simulations cannot replace in-water testing, the
cost of development of manipulator systems can be reduced using
accurate simulators.

Manipulation has made much progress in recent years,
notably from images and point clouds. Underwater
manipulation has been carried out using multi-sensor suites
(Sanz et al., 2013; Cieslak et al., 2015), and underwater sensors
have been developed (Palomer et al., 2018) to leverage perception
methods developed for on-land sensor data. Additionally,
because there is a diversity of underwater vehicle and
manipulator types and classifications, without an authentic
simulation capability, matching perception and control
solutions to specific scenarios relies exclusively on field testing.
Physics-based simulation enables early evaluation of novel
approaches to specific challenges, e.g., model free approaches
to under-actuated scenarios (Tutsoy and Barkana, 2021).

One of the key distinguishing aspects of underwater
manipulation tasks is the perception challenges of the ocean
environment, specifically turbidity, backscatter, and lighting
effects. High-fidelity simulations of sonar-based perception are
essential for bathymetric maps or obstacle avoidance as well as to
support manipulation planning and control to enable accurate
feedback (Manhães et al., 2016). Autonomous manipulation
poses higher demands on perceptual accuracy, on the scale of
centimeters, than larger scale operations and fidelity to conduct
intervention tasks requiring physical contacts in unstructured
environments and without continuous human supervisions.

Sonar-based perception is particularly challenging due to the
slow propagation speed of sound compared to electromagnetic
waves, and the large bandwidth to center frequency ratios of
sonar applications. This challenge leads to a large amount of data
produced by acoustic systems, and correspondingly a large
computational load to simulate high-fidelity synthetic data,
particularly for real-time simulations.

1.1 Previous Work
Several approaches have been developed in the literature for the
open source Gazebo robot simulator (Koenig and Howard, 2004)
which has emerged as a standard environment for the robotics
community. In DeMarco et al. (2015) a Gazebo sonar sensor
model is developed using ray tracing. The Gazebo ray-tracing
functionality generates a 3D point cloud which is transformed
into a sonar image. On inspection, the acoustic properties were
either hard-coded or not considered and did not include speckle
noise or time-angle ambiguities. The latter two aspects are
standard acoustic pulse echo imaging characteristics that are
discussed later. In Cerqueira et al. (2017, 2020), a GPU-based

sonar simulator is developed using rasterization. They model two
types of sonar: a mechanically scanned imaging sonar (MSIS) and
a forward-looking sonar (FLS). The acoustic features provided in
their model exploits precomputed acoustic parameters to convert
the image into a synthetic sonar image using geometric
information provided by the rasterized image. The acoustic
precomputed parameters to render the camera image into a
sonar image includes three components: pulse distance, echo
intensity, and field-of-view.

1.2 Shortcomings of Previous Work
Previous methods in the literature are based on image
processing and video rendering of the simulated rays
intersecting a target to convert into a sonar image pixel-wise
and image-based manner (DeMarco et al., 2015; Cerqueira et al.,
2017; Cerqueira et al., 2020). Overall, a grid is formed for the
acoustic image data, and any rays that intersect a given pixel are
added to it incoherently. These approaches have several
significant shortcomings, including a lack of physically
accurate interaction model between sound and the object of
interest, neglect of time and angle ambiguities that are present in
any pulse-echo imaging system, and a lack of speckle noise that
is present in a coherent imaging system. The time and angle
ambiguity is a function of the point spread function of the
coherent imaging system [i.e., side lobes due to matched filtering
and beamforming, van Trees (1971)]. Speckle is the granular
appearance of an image that is due to many interfering scatterers
that are smaller than the resolution limit of the imaging system
(Goodman, 2015) that cause distortion of the object geometry in
the sonar image.

For any task that requires geometric information obtained
from sonar data (such as autonomous manipulators), these basic
acoustic properties must be accounted for in the simulation. In
addition to the limited fidelity of the previous image-based
approaches, they generate only post-processed imagery of the
underlying acoustic measurements to qualitatively approximate
the interface provided to a human operator through a sonar
viewing application. Autonomous manipulation, perception,
planning and control rely upon access to the sensor-level
measurements that are independent of the viewer used to
render the measurements into imagery.

This study presents a beam-level time series sonar simulation
method to provide a range versus intensity data that underwater
vehicle manipulator systems can exploit. A point-based scattering
model is implemented, following Brown et al. (2017) to calculate
the interaction between sound waves and the target and
environment. This is a simplified representation of target
scattering, but is able to produce realistic coherent image
speckle, and the correct point spread function. Also, with the
underlying assumption of each beam consisting of a sum of
independent scatterers on the target, this model can be easily
parallelized using a GPU (Graphics Processing Unit) to provide a
practical refresh rate. The refresh rate is the rate per unit time at
which datasets are produced by the sensor simulation
components, which is typically user-defined but limited by
computational capabilities of the simulating hardware. This
model was implemented within the Gazebo framework to
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provide both real-time sensor-level beam intensity data and scene
rendering.

The application results based on proposed methods
demonstrate that this multibeam echosounder simulator
generates qualitatively realistic images with high efficiency to
provide the sonar image and the physical time series signal data in
real time with sufficient refresh rate showing its effectiveness and
usability. This sonar data is a key enabler for developing, testing,
and evaluating autonomous underwater manipulation strategies
that use sonar as a perception component.

1.3 Contribution
The contributions of the methods in this article are to virtually
produce sonar perception data with appropriate fidelity and
within sufficient refresh rates. Collectively, the methods can
provide physical time series signal data to improve the
simulation infrastructure that underwater manipulation
strategies and systems can exploit. Individually, our
contributions are as follows:

• A simplified physics-based forward looking echosounder
with a point-based scattering model within Gazebo
framework to support underwater vehicle simulations

• High fidelity acoustics simulation including multibeam,
scattering, noise, and target-wise reflectivity to increase
the fidelity of current capabilities and generate sensor-
level beam intensity measurements suitable for exercising
autonomous manipulation perception, planning and
control

• GPU parallelization for real time sonar simulation data
processing

2 METHODS

The model is based on a point scattering model of the echo level
using the ray-based spatial discretization of the model facets as
scatterers corrected with beam pattern appropriate for a line
array. We first present the geometric information provided by

Gazebo for each beam, then detail the calculations need to
produce an intensity time series for each beam.

2.1 Single Beam Sonar Model
A single sonar beamwithin the field of view (FOV) of the sensor is
shown in Figure 1. An ideal sonar beam pattern is a unit gain
within the orange shaded region, and zero response outside of it.
In reality, the beam response exists over all angles, although the
major contribution is within the beam width of that particular
beam. Here, a beam is modeled using discrete rays. The individual
rays are indexed as i � {1, 2, . . . N} for N rays and beams are
indexed as j � {1, 2, . . . NB} for NB beams. Individual rays
correspond to each scatterer on the target mesh. The following
information is generated for each ray within an individual beam:

• The range ri as the distance from the origin of the sonar
reference frame to the first intersection between the ray and a
target in the field of view. The azimuth of the ray is fixed in the
sensor frame as θi and the elevation angle of the ray as ϕi
(Figure 2).

• The incident angle αi as the difference between the ray vector, z,
and the normal vector, n of the target surface at the location of
intersection between the ray vector and the target surface
(Figure 3).

• The reflectivity of the target intersected by the i-th ray, μi,
which is a property of the target object model (shape, size,
and material), and the sonar frequency and bandwidth.

FIGURE 1 | A single sonar beam with its azimuth and elevation beam
widths.

FIGURE 2 | Set of rays forming a single sonar beam.

FIGURE 3 | Projected ray surface area and surface area patch of the
visual object.
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This scene information is provide by the Gazebo 3D simulation
framework at each execution cycle (typically 1 kHz). The scene
information is then used as inputs to the sonar model described
below to generate an acoustic time series. The range and the normal
vector of the intersected target elements in the environment are
obtained from the depth buffer interface to the Gazebo 3D
rendering pipeline. The locations in the depth buffer are then
correlated with the visual scene rendering to deduce the target
reflectivity. Themethods to calculate the time series are detailed below.

2.2 Ray-Based Beam Model
We define a ray as a vector, zi, from the sensor frame origin to the
first intersection with a visual object within the scene. We
calculate the incidence angle (angle between the surface
normal and the intersecting ray) as

αi � 180° − cos−1(ẑi · n̂i) (1)

where ẑi and n̂i are the ray and normal direction unit vectors
respectively.

The projected ray surface area, dA, is the area projected onto
the visual object by the individual ray as shown in Figure 3. If the
changes in both dθi and dϕi angles for each ray are assumed to be
infinitesimally small, then the projected area ray scene can be
calculated by

dAi � r2i dθidϕi (2)

Using the ray area projected onto the surface of the model
element, dSi is a function of the incident angle, calculated as

dSi � dA
cos(αi) (3)

and expressed as

dSi � r2i dθidϕi

cos(αi) (4)

This equation relates the geometry of the ray to the surface
area of the element that intersects the ray.

The target strength of the model element, which represents the
ratio of scattered to incident intensity, is given by

TSi � 10 log
Isca
Iinc

(5)

where Isca is the intensity scattered by the target measured at 1m
distance, and Iinc is the incident intensity on the target. Models for
target strength are typically complex, and depend on the shape and
geometry of the target (Williams et al., 2010; España et al., 2014; Kargl
et al., 2015). Since the goal of this work is to provide a realistic
simulation of the geometry of a target, but not its amplitude, we use
the empirical Lambert’s law for scattering. Using Lambert’s empirical
model, the ratio of scattered to incident intensity is

Iri
IIi

� μ cos2(αi)( )dSi (6)

where μ is a parameter that controls the overall reflectivity to
the scattered field. This model is commonly used when the
surface is very rough compared to the wavelength and

represents a perfectly diffuse scattered field, and often
provides a good fit to seafloor reverberation measurements
(Lambert, 1760; Prior, 2005; Holland, 2005; Olson et al., 2016;
Boehme et al., 1984). This approximation is reasonable in this
case, since the sensors use a very high frequency center
frequency with a wavelength on the order of O (1 mm). If a
target’s surface is even slightly rough, then the scattered field
will be diffuse. This can occur if the target is manufactured
with some surface roughness, or if it has been subject to
biofouling (Lewis, 1998), which is very common.

Substituting for dSi, the intensity ratio becomes

Irs
IIi

� μ cos(αi)( )r2i dθidϕi (7)

this expression is used below to calculate the amplitude of the
point scatterer amplitude.

2.3 Ray-Based Point Scattering Model
Synthetic time series are simulated using the point-based
scattering model of Brown et al. (2017). Although this model
was developed for the seafloor, it can be used to characterize
the incoherent field scattered by a target. It can also be
adapted to generate a coherent component if that is
desired. The model generates a spatially coherent time
series that is useful in simulating narrowband sonar
applications such as multibeam echosounder (MBES)
systems. The model uses discrete scatterers distributed
over a surface defined by a discretized model mesh. These
scatterers are representative of the number of surfaces a ray
intersects based on the object’s surface mesh.

Here, we define each ray intersected surface mesh element as a
scatterer; the number of rays is equivalent to the number of
scatterers. This approach is valid so long as the ray intersecting
surface mesh is discretized with an average ray spacing smaller
than the resolved area of the system. If this criterion is not
satisfied, then the number of rays in a beam should be increased
before use in this ray-based scattering model.

The overall spectrum of the signal received from each beam,
Pj(f), is computed as

Pj(f ) � S(f )∑N
n�1

aiD(θi, ϕi)ei 2~kri( )
(ri)2 (8)

where S(f) is the transmitted spectrum of the source, N is the
number of scatters, an is the complex scatterer amplitude, f is the
acoustic frequency in Hertz and ~k � kw + ikw′ is the complex, wave
number with real part kw � 2πf/c, and imaginary part kw′ . c is the
medium sound speed, in this case seawater. Pj(f) is computed as a
combination of the physical model for echo level and a complex
random scale factor for speckle noise resolved in the frequency
domain. Attenuation is included as the imaginary part of the
wavenumber, and can be related to other conventions for
attenuation (e.g., dB per m) using formulae in Ch. 8 of
(Jackson and Richardson, 2007). The acoustic frequency is f in
hertz. The subscript j represents the index of the beams
computed. A time series for each nominal beam angle is
produced. The directivity pattern of beam j is denoted by D
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(θ, ϕ) and is a function of the azimuthal angle, θ, and elevation
angle, ϕ between the sensor and the scatterer. The directivity
function to model the beam directivity pattern is discussed in
Section 2.4. This equation is the most complex component of the
model to calculate.

The source spectrum is a user defined input and remains
constant for each ray and is modeled in the frequency domain by
S(f). In this model, we use a Gaussian model with a center
frequency, fc and bandwidth, b, parameters controlling the
location and width of the spectrum respectively, as in

S(f ) � S0e
−(f−fc)2b2π2 (9)

The Gaussian form here is simple, but in any realistic
simulation, the spectrum of the wave transmitted by the sonar
system, and realistic filtering by the sonar receiving subsystem
should be used. The source parameter by S0 and has units of Pa·m.
The decibel version of S0 is the source level (Urick, 2013).

To obtain synthetic time series, acoustic frequency is
discretized into linearly spaced vector from fmin to fmax and
centered on the center frequency, fc. The full width of the
transmit spectrum is the bandwidth, b, a user provided input
based on the sonar specifications. As an example, the bandwidth
for the BlueView P900 Series FLS is 2.95 kHz 1 (Teledyne
BlueView Inc, 2015). The m-th member of the frequency
vector, with m ∈ [1, M].

fm � mΔf + fmin (10)

fmin � fc − b
2

(11)

Δf � 1
T

(12)

M � bT (13)

where Δf is the frequency spacing, T is the desired temporal
duration of the signal. The number of frequencies is M. The
acoustic frequency vector can bemapped to the wavenumnber via
km � 2πfm/c. Once the frequency-domain response is calculated,
then the time-domain response can be computed using an inverse
Fourier transform, typically implemented using the fast Fourier
transform algorithm.

Spherical spreading is an appropriate assumption for
modeling acoustic propagation at short ranges. The two-way
transmission loss for incoherent scattering in Pj(f) is captured in
the denominator, 2r2i , where 2ri is the two-way distance (from
source to scatterer, and back to the receiver).

The scatter amplitude, ai, is calculated for each ray, and is
related to the target strength discussed in Eq. 7. It is calculated
using,

ai � ξxi + iξyi�
2

√
���������������
μicos

2(αi)r2i dθidϕi

√
(14)

The variables ξxi and ξyi are draws from independent Gaussian
random variables. Although the random variable, ξi, is indexed by
i to represent the ray index, the real random variable and the

complex random variable must both be generated and different
from each other, hence the x and y notation. Overall, the random
variables are representative of Gaussian noise and for our
purposes, satisfies the speckle noise requirement (Brown et al.,
2017). If the target is very smooth, then the scattered field will
contain a coherent component, which can be represented by an
additive constant term to ai. The summation of complex Gaussian
noise and a coherent field would result in Rician statistics (Rice,
1944). The variables under the square root represent the target
strength of an incident ray on an object.

2.4 Directivity Pattern Model
A realistic acoustic image should show the side lobes of the beam
pattern of a single point target. In some applications, it is
advantageous to simulate the time series of each element of
the receive array, and perform beamforming. This method is
accurate, as it reproduces the signal processing of the sonar sensor
exactly, but may require proprietary signal processing algorithms
used in the system. However, simulating channel-level acoustic
measurement, prior to beamforming, is computationally
intractable for real time execution, at least using current
computing hardware. To mitigate this inefficiency, we simulate
each beam assuming that the horizontal beam pattern is a
uniform, ideal beam pattern within the beamwidth. The time
series are generated for a fan of beams whose directions
correspond to the beamformed directions for the particular
multibeam echosounder. The ideal beams are then corrected
by performing a weighted sum of the beams, detailed below.
This method does not perfectly reproduce the time series
generated from the more accurate method, but should be
sufficient so long as there are no extremely strong scatterers
outside the fan of ideal beams to be simulated.

The beam pattern of an array is defined in polar coordinates
where the acoustic intensity is the distance along the radial axis
and the angle is relative to the transducer axis. The beam pattern
is visualized as one main lobe in the center with smaller side lobes
radiating away from the main axis (Figure 4).

By inspection, the highest returnwill be along themain axis, and
the response decreases off-axis. Local maxima appear away from

FIGURE 4 | Beam pattern schematics of half power beamwidth.
1http://www.teledynemarine.com/Lists/Downloads/p900-datasheet-hr.pdf.
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the main axis and are referred to as side lobes. Any acoustic image
or measurement will be subject to side lobes, which introduces
some ambiguity into finding a target’s direction in sonar data. This
ambiguity is present when using any coherent imaging system that
uses multiple receivers (van Trees, 1971), similar to the effect of
spectral leakage in spectrum estimation (Harris, 1978). The side
lobe level is the decibel of ratio of the peak of the first side lobe to
the main lobe peak, and is one way of quantifying the corruption of
an acoustic image due to side lobes. Therefore, the echo intensity of
a patch on a target depends on the size and position within a given
beam. The beamwidth, θbw, is marked at −3 dB on the main lobe.
We define half the beam widths

θw � θbw
2

(15)

as the one-way angular distance between the main response axis
and the half power point.

The effect of side lobes can be simulated by performing a
correction whereby each beam is a weighted sum of all the
other beams. The weight is the directivity pattern of the array
with the main response axis steered in a particular direction,
as in

pj(t) � ∑NB
i�1 pi(t)wi,j��������∑NB

i�1 |wi,j|2
√ (16)

wherewi,j is theweight for the i-th beam steered in the j-th direction. So
long as the fan of beams is sampled at less than the 3 dB beam width
(ideally at least half the beam width), this summation reproduces the
correct effect of side lobes in the resulting time series. The form of the
sum used here preserves the mean square value between the corrected
pressure, and the initial simulated pressure.

The weights are the values of the beam pattern sampled at
specific angles. In this work, we use the directivity pattern
corresponding to a uniform linear array,

wi,j � B(θi − θj) (17)

where θi is the horizontal angle corresponding to the i-th and j-th
beam respectively. The beam pattern, B is defined in the following
paragraphs.

The beam pattern, B(θ), expresses the pressure ratio of the
response of the array at an angle θ, relative to the main axis. For a
continuous line array of length L, radiating energy at a
wavelength λ � 2π/kw, the beam pattern is that of a uniform
aperture function. The radiated pressure is modeled as a
normalized sinc function,

B(Lu) � sinc(Lu) (18)

�
1, for Lu � 0

sin(πLu)
πLu

, otherwise

⎧⎪⎪⎨⎪⎪⎩ ,

where u is the electrical angle

u � sin(θ)
λ

(19)

The half intensity point, θw, can be solved for by setting

|B(θw)|2 �
sin π L

λ sin(θw)( )
π L

λ sin(θw)

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣
2

� 1
2

(20)

For high frequency sonar, we can assume L ≫ λ, and use the
small-argument approximation to the inner sin function, and θw
becomes

L
λ
≈
0.884
θbw

� 0.442
θw

(21)

The final beam pattern is

B(θ) �
sin π 0.884

θbw
sin(θ)( )

π 0.884
θbw

sin(θ) (22)

here, beam pattern, B, can be either positive or negative,
depending on the beam angle θ. When squared, it captures
the intensity version of the beam pattern.

The overall algorithm to calculate the sonar model is shown in
Algorithm 1. To generate a single pair of range and intensity
values for each beams (rj, Ij) for j-th beam, using ray-based beam
model (Eq. 8), the beam pattern in Eq. 22 is applied to each
sampling rays. Each sample is a ray at ϕi in the range [−ϕw, ϕw]
with the associated range and intensity pair (ri, Ii). Here, ϕw is
equivalent to θw for elevation angles. The set of ordered pairs
from all rays is i � {1, . . . , N} used to construct a single pair of (rj,
Ij) for a beam. Thereafter, for interference between beams, Eq. 16
is applied with the set of pairs from all beams j � {1, . . . , NB} as a
corrector.

Algorithm 1 Multibeam echosounder calculation algorithm.

2.5 Gazebo and Robot Operating System
Implementation
The Gazebo simulator and Robot Operating System (ROS) have
become de facto standards for robotic simulations. Gazebo simulates
various perception sensors using modular plugins in the

.
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environment. The sonar model is implemented in Gazebo as shown
in Figure 5 as released as open source2. Based on Gazebo’s camera
plugin, the sonar field-of-view data is rendered from the scene using
azimuth and elevation field-of-view angles of the actual sonar to

generate three dimensional point clouds of the target objects. The
point cloud resolutions are set tomatchwith the number of beams in
the sonar in azimuth angles andmultiple rays in the elevation angles.
Each ray in two dimensional sonar field-of-view data consists of
target distance, ray angles, ray area, ray incident angle to the target,
target normal, and prescribed reflectivity of the target.

Using a GPU with the NVIDIA CUDA library3 (Vingelmann
and Fitzek, 2020), each ray is computed in parallel using Eq. 8 to
generate signal spectrum. Here, the complex scatter amplitudes
are calculated for each ray accordingly using the sonar field-of-

FIGURE 6 | A multibeam echosounder set in side the square sonartank
with a cylinder target.

FIGURE 5 | Overall procedures of the imaging sonar simulation process: (i) a Gazebo camera plugin obtain the underwater scene; (ii) two dimensional set of sonar
field-of-view data captured in the rendering scene; (iii) point scatteringmodel is calculated for each ray data (iv) summation of rays to each beam; (v) beam pattern effect is
calculated for beams; (vi) and the windowing and fast-fourier transform (FFT) is performed to produce range-intensity sonar data for each beam.

TABLE 1 | Sonar configurations.

Sonar configuration (Blueview
P900-90)

—

Frequency 900 kHz
Bandwidth 2.95 kHz
Field-of-view 90°

Range 10 or 60 m
Beam width 1° × 20°

Beam spacing 0.18°

# of beams 512
# of rays 11 or 114
Source level 220 dB re μPa

2https://github.com/Field-Robotics-Lab/nps_uw_multibeam_sonar. 3https://developer.nvidia.com/cuda-toolkit.
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view data. Thereafter, ray spectra are summed to calculate the
beam signal spectrum.

In order to apply beam pattern effect, the weights in Eq. 16
are computed. To further reduce the computation time, the
calculation is also performed as matrix multiplication using the

GPU with the weights (Eq. 17) pre-calculated when sonar
rendering parameters are fixed. Finally, matrix multiplication
for Gaussian windowing and Fourier transform are also
performed using GPU to generate range-intensity signal data
for each beam.

FIGURE 7 | Simulated intensity-range sonar data of a cylinder in a square sonar tank (reflectivity � 1e-3, # of elevation rays � 11).

FIGURE 8 | Simulated multibeam echosounder image of a cylinder in a square sonar tank with reflectivity � 1e-3 [(A) live-view screenshot in the Gazebo with 11
rays, (B) time-averaged image colorized using MATLAB with 114 rays].

TABLE 2 | The refresh rate and calculation time of the sonar image for various sonar configurations.

Full calculation Ray reduced Ray/Range reduced

Range (m) 60 60 10

# of rays 114 11 11

Refresh rate (Hz) 0.5 3.0 10

Time (s) Ray signal 0.3 0.02 0.00

Summation 1.26 0.16 0.04

Correction 0.05 0.05 0.01

FFT 0.03 0.03 0.00
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The final signal data of the sonar simulation is produced in
a custom ROS message format4 by UW-APL (2021) which is a
community-driven standardized ROS message for
hydrographic applications. The message format is designed
to match that of the physical sonar applications. The final
sonar signal data can be mapped onto polar coordinates to
generate a sonar image.

3 REAL-TIME MULTIBEAM
ECHOSOUNDER SIMULATION

To evaluate our simulator, the sonar model with the developed
plugin is set inside a square sonar tank with a cylinder as a target
as shown in Figure 6. The distance between the 0.4m diameter
cylinder and the sonar is 4m and the wall on the opposite side of
the tank is 5.5 m. The sonar configurations are summarized in
Table 1.

The range-intensity sonar data obtained from the simulator is
shown in Figure 7 for 16 beams among a total of 512 beams. It
shows intensity peaks at the range where the rays hit target objects in
the environments. The intensity-range data can be converted into
the final sonar image by mapping onto polar coordinates using
azimuth and elevation angles of each beam. Figure 8 shows the
live-view window in Gazebo (left) and time-averaged image
colorized using MATLAB for visualization of the scattering effect
(right). In the live-view, the data is manipulated to scale into integer
format to match actual sonar data with a controllable gain. Here,
both the sonar tank and the target cylinder are set to have 1e-3
reflectivity parameter value.

The result shows the target object and the sonar tank in the final
image. Also, the beam scattering of the signal is shown in the
vicinity of the target cylinder on the colorized image.Table 2 shows
the refresh rate of the sonar image as measured on a workstation
with an Intel i9-9900K 3.6 GHz, and a Nvidia GeForce RTX
2080Ti. The most computationally demanding block is the

summation that limits maximum range. If the number of rays
and the maximum range are reduced, a refresh rate of above 10 Hz
is achievable with this hardware, providing real-time sonar data.

It is often the case that the target objects in the environment
have different reflectivity according to their material properties.
By prescribing the reflectivity parameter for each object model in
the scene, the sonar amplitude is calculated accordingly. Figure 9

FIGURE 9 | Simulated multibeam echosounder image of various reflectivities [(A) low sonar tank reflectivity, (B) low target cylinder reflectivity].

FIGURE 10 | Simulated multibeam echosounder image of two cylinder
targets [(A) simulation environment, (B) live-view sonar image].

4https://github.com/apl-ocean-engineering/hydrographic_msgs.
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shows reflectivity value set to 1e-5 for the sonar tank (left) and the
target cylinder (right).

Figure 10 shows two cylinders in the sonar tank. Here, the
reflectivity of the sonar tank is set to 1e-4 and cylinders to 1e-2.
When the two cylinders are tilted as in Figure 11, the amplitude
gradient for the difference of distances are shown on the surface
of a cylinder on the right and the difference of the incident
angles on the left, as well as the blockage effect on the outer wall
of the sonar tank.

4 CONCLUSION

In this article we have developed a method to simulate physical-
based and high-fidelity multibeam echosounder acoustic
perception that underwater manipulation strategies and systems

can exploit for development, testing and evaluation. The
contributions of this research are the implementation of the
point-based scattering model to represent target scattering to
produce realistic coherent image speckle and the correct point
spread function, as well as the usage of GPU parallelization to
obtain real-time refresh rate of up to 10 Hz. A fruitful area of future
work would be to implement a more physically based scattering
model, such as the Kirchhoff approximation (Abawi, 2016).

The multibeam echosounder developed can provide a sonar
image and the underlying physical intensity-range time series
signal data approximating what would be produced by an actual
sonar. It is implemented as a plugin in the Gazebo framework and
released as an open source project for users to manipulate for
their uses, such as benchmarking against real sensors for
quantitative comparisons. The parameterization of the plugin
allows users to simulate various echosounders on the market.
Accurate physics-based sensor modeling is a step toward
simulating more realistic perception for manipulation, in order
to leverage existing manipulation methods in the underwater
domain.
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